

Requirements.

Quarterly..
The Newsletter of the. .

 Requirements Engineering Specialist Group..
 of the British Computer Society. .

 1

 `
© 2008 RESG http://www.resg.org.uk RQ48 (June 2008)

Contents
RE-soundings 1

From the Editor 1
Chairman's Message 1

RE-treats 2
RESG Party, Soapbox and AGM 2
REET’08 2
Ubiquitous Requirements 2
So You Want to be a Requirements Analyst 2
PhD Student Event 2
Creativity Tutorial 2

RE-calls 3
RE'08 3
Mastering the Requirements Process 3
Introduction to Requirements 3

RE-writings 3
To Adapt or Not to Adapt: that is the
Requirements Question 3
RE in Context-Aware Software 5

RE-flections 7
Getting the Best from Scenarios in Your
Project 7

RE-verberations 10
Are PINs Less Secure than Signatures? 10
Systems Engineering in the News 11

RE-readings 11
Adrenaline Junkies and Template Zombies 11
Guide to Requirements SL-07 Template
with Examples 13

RE-partee 14
The Dog shall be Compatible with Owner 14
Updated Definitions File 14
Updated Lamp-post Joke 14

RE-sources 15
Books, Papers 15
Media Electronica 15
RE-actors: the committee of the RESG 15

RE-soundings

From the Editor

This RQ is a Special Issue, on Adaptive RE, and my
last – at least, for now; and I expect I will continue to
review books and write a RE-flection from time to
time.
My new book, Discovering Requirements, is scheduled
to appear in March 2009. It has recently gone down the
hatch for formal review by the publishers, John Wiley,
so when I come back from my summer holidays I will
probably have a lot of editing to do. I hope to have a
book launch party sometime in the spring – RQ will
keep you informed.
Pete has done a wonderful job as chairman and an
equally good job of this Special Issue. I hope RQ will
continue to run a “Special” every year to ring the
changes from reporting on events.

As well as writing, I have been developing new course
materials for teaching RE. It seems that the market is at
last changing rapidly in a direction long foretold:

towards shorter, modular courses and online
instruction. Curiously, this seems to demand more, not
less from printed books and face-to-face seminars,
courses, and workshops. The RESG, too, is looking at
an increased web presence, with more opportunities to
participate for people near and far. I hope you’ll
continue to take part in the RESG’s journey of
discovery.

Ian Alexander, Scenario Plus

Chairman's Message
This issue has reminded me why Ian has been such a
great RQ editor. While my job has been confined to
commissioning two pieces on adaptive systems (from
Nelly Bencomo and Jon Whittle, and from Mohammed
Salifu), Ian has been busy with overall editorship,
writing articles and comment and (co-)running a big
event (see RE-flections). Oh. And sending me gentle,
but essential reminders to get on with it. Ian’s done all
this while finishing his latest book. Readers need not

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 2

 2

fear the loss of Ian from the editorship too much. He
will still be a big cog in the RESG and doubtless we
will prevail upon him for the odd article.

Well, here is Ian’s last RQ and I hope you will agree
that it’s well up to standard. If you don’t, come along
to the RESG party, soapbox and AGM at Imperial

College from 4.00pm on the 10 July and give us some
stick. I hope to see you there.

Pete Sawyer, RESG Chair

RE-treats
For further details of all events, see www.resg.org.uk
Forthcoming events organised by the RESG:

RESG Party, Soapbox and AGM
10 July 2008, Imperial College, London

As last year, we’ll be having a mid-summer
networking event. This is an opportunity to meet other
members of the specialist group, harangue the
committee, hear what we have in store for the coming
year and, if you have an opinion you want us all to
hear, have a go on the soap box. There will be drinks,
nibbles and music. It’s timed to help at least some
people drop by after work so starts at 4.00pm and goes
on into the early evening. We hope to see you all at
Imperial College on the 10th July. See the website for
more details.

Contact Pete Sawyer

REET’08
at RE’08, September 8/9, 2008, Barcelona

The RESG is happy to be co-sponsoring this year's 3rd
International Workshop on Requirements Engineering
Education and Training (REET), to be held on the 9th
September alongside RE'08 in sunny Barcelona. The
one-day workshop will address issues related to RE
education, both as part of a formal university degree
and as ongoing skills training within the workplace.

RE education and training is increasingly recognized as
a critical component in the success of a software
development project. This has led to a growing
identification of the importance of incorporating
significant RE components into the curriculum of
university degrees in Software Engineering, Computer
Science, Information Technology and other related
areas. Furthermore many industrial organizations are
recognizing the need to develop RE related training
programs as part of their ongoing process improvement
initiatives.

If you have something to add to a discussion in this
area, please submit a paper or simply sign up to attend.
Full details are available on the both the RESG website
(www.resg.org.uk/sources.html) and the REET'08
website (re.cti.depaul.edu/REET08/). In addition to
topics related to curriculum development, creative
contributions related to pedagogical techniques for

teaching RE skills are strongly encouraged. These
skills include requirements elicitation, modeling,
analysis, conflict negotiation, consensus building, and
requirements specification writing and reviewing skills.
Submissions could take the form of experience reports
or demonstrations of specific teaching techniques and
training materials.

Paper submission deadline is the 4th July. Please
consider sending something!

Ubiquitous Requirements
15 October 2008, London

Computers are becoming ubiquitous and so are the
requirements for the applications that they run. To date,
related areas of ubiquitous, pervasive and ambient,
computing have been technology-led. The technology
is maturing very fast, however, and we are starting to
see real applications. But is RE ready? This event will
explore what is special about ubicom for which RE
needs to find the answers.

Contact Pete Sawyer

So You Want to be a Requirements
Analyst
2pm, 5 November 2008, University of Westminster,
London

Maybe you are thinking about becoming a
requirements analyst. Do you know what kind of life
can you expect? What your biggest joys and deepest
sorrows will be? How you will spend your days? What
skills you will need? Are the things that are taught in
universities and described in books actually useful?
During this event, several practising requirements
analysts will tell you what their job is really like.

Contact Emanuel Letier, University College London

PhD Student Event
December 2008, London

Contact Dalal Alrajeh, Imperial College

Creativity Tutorial
March 2009, London

Contact Neil Maiden

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 3

 3

RE-calls
Recent Calls for Papers and Participation

RE'08
The theme of this year’s conference is RE for a
sustainable world.

September 8-12, 2008, Barcelona, Catalonia, Spain
http://www.re08.org/

Mastering the Requirements Process
3 Days, 15-17 September 2008, London
http://www.irmuk.co.uk/1/

Introduction to Requirements
2 days, 21-22 October 2008, The IET, London,
presented by Ian Alexander, Scenario Plus
http://www.theiet.org/courses

RE-writings

To Adapt or Not to Adapt: that is the
Requirements Question
Nelly Bencomo and Jon Whittle, Lancaster University

On a wintry January evening somewhere in southwest
Germany, a group of forty researchers and practitioners
scrambled off a train and bundled, windswept and
bedraggled, into a series of waiting taxicabs for a forty-
five minute journey into nowhere. We left Frankfurt
railway station at four o’clock. It was already dark. So
when we arrived two hours later at Türkismühle, it
could just as easily as have been any small town in
central Europe. The taxi ride did not make things any
clearer. As we trusted ourselves wholeheartedly to the
cab driver, a few of us turned to each other and
wondered if we were indeed at the start of a week of
academic meetings or had unwittingly found ourselves
as protagonists in a film noir thriller. Fortunately for
us, the former was indeed the case.

Participants of a Schloss Dagstuhl Seminar

So what were we doing here? Well, as it turns out, we
were the lucky participants of a Schloss Dagstuhl
seminar entitled Software Engineering for Self-
Adaptive Systems. The aim of this seminar was to bring
together smart people from all walks of the software
life, including requirements engineers, software
architects, middleware and programming language

experts. Our remit was simple. Within the space of five
short days, we were to come up with solutions for the
very pressing problems of how to systematically design
and build “self-adaptive systems”.1 A self-adaptive
system is a system that is able to autonomously modify
its behaviour in response to environmental changes.
Despite the science-fiction sounding nature of the term,
such systems are now regularly deployed in enterprise
computing, embedded and pervasive systems. As yet,
however, we lack a clear understanding of how to
engineer the software for these systems. Traditional
methodologies break down because of the inherent
flexibility required for self-adaptation.

As it turned out, perhaps the most exciting part of the
seminar (at least to RESG members!) were the very
extensive discussion sessions on requirements
engineering. A small group of renegades joined forces
to debate the topic and, over beef roulade and apple
cake during the day, and, cambozola and weissbier in
the evenings, eight of us managed to come to some sort
of conclusions to the following question: what does
requirements engineering for self-adaptive systems
mean? As well as ourselves, the starring actors were:
Betty Cheng, Anthony Finkelstein, Jeff Kramer, Jeff
Magee, Sooyong Park, and Schahram Dustdar.

It turns out that only preliminary work has been done
on this topic. Immediately, a number of important but
as yet unanswered research questions came to mind.
Self-adaptive systems must continuously monitor
changes in their context and react accordingly. But a
system cannot monitor everything all the time because
of the vast resources that would be needed. Therefore,
from a RE point of view, one must ask which aspects
of the environment should the self-adaptive system
monitor? And exactly what should the system do if it
detects a less than optimal pattern in the environment?
The system still needs to maintain a set of high-level
requirements that should be enforced regardless of the
environmental conditions. But non-critical

1 A final report, “Software Engineering for Self-
Adaptive Systems: A Research Road Map” was the
main output of this seminar.

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 4

 4

requirements could well be relaxed, thus allowing the
system a degree of flexibility during or after
adaptation. Clearly, self-adaptation entails new
perceptions of the way requirements should be
conceived in comparison with the traditional practices
of focusing on static goals.

One of the main challenges that self-adaptation poses is
that when designing a self-adaptive system, we cannot
assume that all adaptations are known in advance – that
is, we cannot anticipate requirements for the entire set
of possible environmental conditions and their
respective adaptation specifications. RE for self-
adaptive systems, therefore, must deal with uncertainty
because the expectations on the environment frequently
vary over time. For example, if a system is to respond
to cyber-attacks, one cannot possibly know all attacks
in advance since malicious actors develop new attack
types all the time. As a result, requirements for self-
adaptive systems may involve degrees of uncertainty or
may necessarily be specified as “incomplete”. The
requirements specification therefore should cope with:

• incomplete information about the environment;

• incomplete information about the respective
behaviour that the system might expose;

• evolution of the requirements at runtime.

Our endeavours led us to formulate a number of short-
and long-term research challenges in RE for self-
adaptive systems. We think that these challenges can
be progressively tackled. We outline these below,
starting with shorter-term challenges and progressing to
more visionary ideas.

Challenge one: a new requirements language for
self-adaptation

Current languages for requirements engineering are not
well suited to dealing with uncertainty. We suggest that
richer requirements languages are needed. For
example, in goal-modelling notations such as KAOS
and i*, there is no explicit support for uncertainty or
adaptivity, and scenario-based notations generally do
not provide any support either. Certainly, the most
frequent notation for specifying requirements in
industry is still using natural language prose.
Traditionally, requirements documents make
statements such as “the system shall do this”. For self-
adaptive systems, the prescriptive notion of “shall”
needs to be relaxed and could, for example, be
replaced with “the system may do this” or “if the
system cannot do this, then it should eventually do
that.” This leads us to believe that a new requirements
vocabulary for self-adaptive systems is needed, that
gives stakeholders the flexibility to explicitly account
for uncertainty in their requirements documents. In its
simplest form, this new language might be just a set of
keywords describing common forms of flexibility:

Traditional RE:

• “the system SHALL do this ... ”

Adaptive RE:

• “the system MIGHT do this ...”

• “…it MAY do this... AS LONG AS it
EVENTUALLY does this ... ”

• “the system OUGHT to do this... but if not, it
SHOULD EVENTUALLY do this ...”

A more complex version would allow for a hierarchy
of requirements that are less or more critical and,
therefore, less or more adaptable. An even more
complex version might be a formal notation with
concepts such as those given above defined precisely.
In any case, such a vocabulary would change the level
of discourse in requirements from prescriptive to
flexible. There would need to be a clear definition of
terms, of course, as well as a composition calculus for
defining how the terms relate to each other and
compose.

Challenge two: mapping requirements for
adaptation to adaptive architectures

Given a new requirements language that explicitly
handles uncertainty, it will be necessary to provide
systematic methods for refining models in this
language down to specific architectures that support
runtime adaptation. There are a variety of technical
options for implementing reconfigurability at the
architecture level, including component-based, aspect-
oriented and product-line based approaches, or hybrid
solutions. However, there could be a big gap in
expressiveness between a requirements language that
incorporates uncertainty and these existing architecture
structuring methods.

Challenge three: managing uncertainty

Introducing uncertainty into software engineering
processes implies the need to manage this uncertainty.
In this sense, some requirements will be considered as
invariants (unchangeable), while others will permit
some degree of flexibility. For example, a system
cannot start out as a transport robot and self-adapt into
a robot chef! What we want to emphasize here is that
the original intent cannot change. Allowing uncertainty
levels when developing self-adaptive systems requires
a trade-off between flexibility and assurance such that
the critical high-level goals of the application are
always met.

Challenge four: requirements reflection
As noted above, self-adaptation deals with
requirements that vary at runtime. Therefore, it is
important that requirements lend themselves to be
dynamically observed, i.e. during execution. Reflection
enables a system to observe its own structure and
behaviour to potentially reason about the observations.
Leveraging and extending beyond complementary
approaches, Finkelstein coined the term “requirements
reflection” that would enable systems to be aware of
their own requirements at runtime. This would require
an appropriate model of the requirements to be

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 5

 5

available online. Such an idea inspires interesting
research questions, such as: could a system
dynamically observe its requirements? In other words,
can we make requirements runtime objects? Further
research is needed to examine how current and new
technologies may provide the infrastructure to do this.

Challenge five: online requirements refinement
By definition, self-adaptive systems react to changes in
their environment. But in the future, they should also
be able to react to changes in their requirements. In
particular, new requirements might be added at run
time, and the system may even add new requirements
itself. For example, the isolation and long duration of
deep space exploration missions could easily lead to a
circumstance where a spacecraft should add new
requirements to deal with situations that simply could
not be conceived of by its designers. The natural
consequence of such thinking, as pointed out by
Kramer and Magee [3], is that RE processes should be
performed at run time, so that new requirements can be
dynamically added and autonomously refined into a
design that satisfies the requirements by making use of
existing capabilities.

A final note …

It’s Not the Arriving but the Journey that Matters

As with all such meetings, our Dagstuhl seminar
succeeded more in articulating problems than solutions.
As the train pulled out of Türkismühle station,
however, we realized with enthusiasm what great
challenges lay ahead for the RE community. It was now
day time. We had been “locked up” with each other for
an intense week of brainstorming and contemplation. In
striving to get as much out of the sessions as possible,
we hardly had time to notice our beautiful
surroundings. Still, there was a two hour journey to the
airport remaining. Perhaps there was yet time for the
German countryside to inspire some great ideas…

After disseminating and discussing the results from the
seminar with our colleagues and during the SEAMS’08
workshop at ICSE’08, we have found that the terms
uncertainty and incompleteness in requirements, and
evolution of requirements at run time can provoke
engaging and controversial discussions. Therefore, we
look forward to your comments and feedback!!!

References
Dagstuhl Seminar Proceedings 08031, Software
Engineering for Self-Adaptive Systems,
http://drops.dagstuhl.de/portals/index.php?semnr=08031

Software Engineering for Adaptive and Self-Managing
Systems Workshop (SEAMS 2008) at ICSE’08
http://www.hpi.uni-potsdam.de/giese/events/2008/
seams2008/

Jeff Kramer, Jeff Magee, Self-Managed Systems: an
Architectural Challenge, 2007 Future of Software
Engineering (FOSE’07), p.259-268, May 23-25

RE in Context-Aware Software
Mohammed Salifu, The Open University

Introduction

The taking up of ‘smartphones’ has increased the
provision of mobile services and applications in areas
such as mobile banking, social networking and general
entertainment. To manage these multifaceted services,
there is a need for quality of services such as usability
and efficiency when smartphones are used in different
environments. In meeting this challenge, smartphones
should be made context-sensitive.

Context sensitive devices require context-aware
software applications, which monitor changes in their
environment and switch their behaviour in order to
continually satisfy requirements. Therefore, context-
aware applications belong to a general class of
software systems also known as self-managing or
autonomic systems.

This article outlines the challenges of context-
awareness problems and scopes our approach via the
use of problem-oriented analysis.
Context-Awareness Scope

Specifying monitoring and switching in context-aware
applications can be difficult due to their dependence on
varying environmental properties. Also, given the need
for self reliance (i.e., minimal human intervention),
self-managed systems behaviours must be rigorously
analysed and their specifications formally verified so as
to assure confidence. Such analysis requires reasoning
about self-managing systems at different levels of
abstraction, from the problem space to the design
space. To this end, Kramer and Magee [1] have
proposed an architecture-based approach, which
consists of three layers in abstraction: Component
Control at the bottom, Change Management in the
middle, and Goal Management at the top. This
approach aims to provide a link between the design
space (component control level) and problem space
(goal management level). Underpinning this approach
is the application of the standard principle of
separation of concerns. Kramer and Magee’s approach
represents a refinement of a long list of architectural
approaches in dealing with self-managing systems [1].

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 6

 6

We share in the view that self-managing systems must
be analysed at different levels of abstraction.
Therefore, in addition to the ‘vertical’ separation of
concerns across different layers, we advocate
‘horizontal’ separation of concerns within layers. Also,
we observe a need for a ‘problem analysis’ step
between the ‘goal management’ and ‘change
management’ layers. This is because while goals
capture the intentions of stakeholders, they do not
necessarily bring to light the underlying contextual
constraints that must be addressed in determining
whether the solution will satisfy the goal. Adequate
analysis of the problem context, beyond the intentions
of stakeholders, is imperative in context-aware
applications due to the need for self reliance and the
impact of the context on continual requirements
satisfaction.

Within our problem analysis, we have identified three
categories of context-awareness problems that require
systematic and detailed analysis: (a) the classification
of different application behaviours for different
contexts; (b) the monitoring of environmental
properties to assess their impact on continual
requirements satisfaction; and (c) the selection of
appropriate matching of different behaviours that
ensure requirements satisfaction in all contexts. Our
problem-oriented approach is aiming at analysing these
categories of problems in deriving specifications for
context-awareness.

RE in Context-Awareness
We discuss the analysis of the three categories of
problems as follows.

Problem Description: The role of context in analysing
nearly all software applications is widely recognised.
Given the pivotal role of context in context-aware
applications, problem descriptions for this class of
applications require a clear separation of concerns
among context, requirements, and specifications. Such
a separation provides a means for the identification of
the underlying causes that motivate variations in
application behaviour. For example, we are able to
identify situations in which the requirements remain
stable but changes in contexts necessitate different
specifications in satisfying the same requirements.
Therefore, we found use of three descriptions for a
problem proposed by Jackson: (1) a description of the
context in which the problem resides in terms of known
domain properties of the world, denoted as the world
W; (b) a description of the required properties of the
world, denoted as the requirement R; and (c) a
description specifying what the computer system
running the software-to-be must do to meet the
requirements, denoted as the specification S. These
three descriptions are related by the formula [5]:

W, S R

The symbol “” denotes entailment, that is, the
satisfaction of S in W entails that of R. The “,” is the
separator for context and specifications.

Context Analysis: Having a sound conceptual basis for
separating the concerns of context, requirements and
specifications only takes us so far. To fully ascertain
the impact of contextual changes, further refinement of
the context of applications is required. This is because
we both need to identify the relevant contextual
variables whose changes may violate requirements
satisfaction, and the dependency among the variables
that may constrain the activities of context-awareness
(i.e., monitoring and switching).

Given that context-aware applications must depend on
themselves for continual requirements satisfaction, a
formal analysis of the context, possibly with tool
support, is required to assure confidence. Therefore, in
addition to the incorporation of a systematic separation
of concerns, we have provided a practical
characterisation of concepts for refining context. This
enables us to analyse the relationships between
contextual properties and the satisfaction of
requirements, as activities of context-awareness [2].

Individual Problem Analysis: Individual problem
analysis focuses on concerns that must be addressed in
preparation for context-awareness. Therefore, the focus
is on the analysis of the changeable context and its
impact on deriving different behaviours; the monitoring
of an individual environmental property; and the
switching from one application behaviour to another.
The problem analysis of monitoring each (individual)
contextual variable addresses the concerns of
monitoring an informal environment and the fidelity of
the information obtained, which creates a need to
verify and validate the adequacy of the output of
monitoring. Furthermore, where a contextual variable
is not directly observable, a transformation may be
required in identifying a more observable equivalent.
Similarly, the problem analysis of switching between a
pair of behaviours addresses the concern of identifying
appropriate contextual situations at which switching
can be carried out. Finally, we need to analyse and
resolve the conflicts between the need for continual
requirement satisfaction and the constraints of the
context that inhibits switching.

Our approach [2, 3] provides concepts for an informal
but systematic analysis of application contexts, which
can then be used to derive proper behaviour for
changing context through monitoring and switching.
The analysis of individual problems is informal while
the relationships between them are formalised. This
provides flexibility in analysing individual problems
while imposing necessary constraints on the derived
context-awareness specifications.

Problem Analysis of Context-Awareness: The problem
analysis of context-awareness aims at deriving
appropriate conditions for the composed monitoring
and switching activities and for assessing their impact
on satisfaction levels of context-sensitive requirements.
Different parts of the requirements for applications
such as security and performance exhibit different
sensitivity to changes in the operating environment.

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 7

 7

The relationship between context-sensitive
requirements and contextual changes represents a form
of contextual dependency. Knowledge about this form
of contextual dependency and those among contextual
variables provide a means for enhancing efficiency in
monitoring and switching. Using contextual
dependencies, one can avoid monitoring all variables
all of the time and avoid ‘non-essential’ switching, as
lowering the satisfaction level of requirements
following a contextual change, may not necessarily
violate the requirements.

Using our characterised concepts for refining context,
we formulate two theorems for monitoring and
switching, which define the necessity criterion for
monitoring a contextual variable, and necessary
condition for switching application behaviour [4].
These theorems guide a formal analysis of the overall
context-awareness problem. Given different
specifications for different context situations (derived
by individual problem analysis) and knowledge about
contextual dependencies, confined by these theorems,
we are able to encode a constraint satisfiability
formula, the solution of which produces a specification
for context-aware behaviour. This forms the basis for
automated analysis of the impact of varying context on
monitoring and switching, and for verifying the
resulting context-aware behaviour through simulation.

Automated Analysis Support: In order to manage the
context-awareness problem space and analysis process,
some form of tool support is necessary. This is because
the identification of relevant contextual variables and
derivation of different behaviours is iterative and time-
consuming. Therefore, there is a need for on-the-fly
verification and validation of newly added behaviours
to ensure that the existing context-awareness control
‘engine’ is not broken.

Our approach enables us to transform concerns in
problem frame based descriptions into statecharts and
process models; benefiting from using the logical
relation W, S R. Using built-in simulations in process
models and statechart with our own tool, one can
validate context-awareness specifications and
demonstrate to clients without requiring full

implementation. Showing the validation specification
explicitly as a state machine or process model, one can
continually verify the model even when new
behaviours are added by executing a recompiled
simulation.

Conclusion

We have outlined the scope and challenges of the
context-awareness problem and our contribution
through the use of our problem-oriented approach in
addressing them. This has highlighted the role of
context-aware software in developing smart devices,
capable of adapting their behaviour in response to
environmental changes. Further challenges by way of
identifying patterns of monitoring and switching
behaviours that facilitate ‘normal’ problem analysis are
ongoing.
References

1. Kramer, J. and J. Magee, Self-Managed Systems: an
Architectural Challenge, in Proc 29th Int. Conference
on Software Engineering (ICSE'07) Minneapolis, 2007.

2. Salifu, M., Nuseibeh, B., Rapanotti, L., Tun, T.,
Using Problem Descriptions to Represent Variability
for Context-Aware Application. in First International
Workshop on Variability Modelling of Software-
Intensive Systems. 2007. Limerick, Ireland: Lero.

3. Salifu, M., Nuseibeh, B., and Yu, Y., Specifying
Monitoring and Switching Problems in Context, in
Proc. 15th IEEE International Requirements
Engineering Conference. 2007: Delhi, India. p. 211-
220.

4. Salifu, M., Yu, Y., and Nuseibeh, B. Analysing
Monitoring and Switching Requirements using
Constraint Satisfiability. in Technical Report -ISSN
1744-1986. 2008: The Open University.

5. Zave, P. and Jackson, M., Four Dark Corners of
Requirements Engineering. ACM Transactions on
Software Engineering and Methodology, 1997. 6(1): p.
1-30.

RE-flections

Getting the Best from Scenarios in Your
Project
(Tutorial and Seminar) 1-day Event, Tuesday 10th June
2008, Northampton Suite, City University, London

Morning Tutorial: Introduction to Scenarios

In the morning, Ian Alexander gave a tutorial which
looked at the nature of scenarios in all their many
forms, from stories and storyboards to fully-dressed
use cases. The pros and cons of the different styles
were explained.

It then examined ways of discovering scenarios, with
practical workshop techniques and common scenario
patterns. Use cases, being extremely popular but poorly
understood, were explained in some detail.

Exceptions are key components of use cases; the
tutorial explored how to use scenario structure to
improve the search for exceptions, and how to identify
the ones that really matter.

The tutorial then looked at negative scenarios,
including intentional threats and forbidden
combinations, and considered how to discover them.

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 8

 8

Finally, the valuable relationship of scenarios and test
cases was examined. Ways that you can use scenarios
to start working on tests early in a project were
discussed.

Debriefing a Group Exercise

The tutorial was accompanied by group exercises in
scenario discovery.

Afternoon Seminar: Techniques

Paul Grünbacher, Johannes Kepler University Linz,
Austria, spoke on Scenarios in the Wild: Experiences
with Mobile Tools for Scenario-Based Requirements
Discovery.

In workshops, “people have only limited ability to
describe what they do and how they do it without
immediate access to the social and material aspects of
their lives”, said Grünbacher, quoting Blomberg et al
(2003). Workshops are costly, and it is hard to get the
busiest but most needed stakeholders to attend them.
Further, participants may not understand the dynamics
of scenarios; and unexpected events are difficult to
simulate.

An alternative is to observe users, as for instance with
Beyer and Holtzblatt’s Contextual Inquiry. Their book,
however, is quite abstract; people like to be guided by
a definite method with steps to follow one at a time.
So, said Grünbacher, we put the Art-Scene scenario
presenter on a mobile device (a PDA rather than a
laptop, to avoid getting in the way of operations) to
enable the capture of requirements during periods of
actual observation. The mobile approach (MSP) is not
limited to capturing text; multimedia elements such as
audio clips can be used to describe requirements. For
example, he played a clip of pilots talking to air traffic
control, recorded on the PDA (from within the scenario
presenter tool).

The result was to gather requirements at about 8x the
rate of a workshop, and at less cost because only one
stakeholder was interviewed / observed at a time (for
just 15 minutes each).

Grünbacher did in fact try doing this “in the field” – in
fact on a mountain – to capture navigation
requirements for cross-country skiing (much like Ian
Alexander’s tutorial example). It didn’t work very well,
as the skiers were much faster than the analysts; and
the low temperature exhausted the batteries in 45
minutes, causing the analysts to resort to an unplanned
use of pencil and paper.

Currently the tool does not allow scenarios to be edited
in the field; you can just add requirements to them. The
scenarios were generated from use cases, ie the
analysts were presented with pre-defined scenarios.
Neil Maiden agreed that this was over-prescriptive;
new scenarios and variations are continually observed
in the field. The tool does however allow you to
annotate a scenario so you can ask questions later.

Scenarios can thus be used in workshops; with
visualizations; or on a mobile device, in the field. All
have their uses.

Paul Grünbacher with Mobile Scenario Presenter

on his PDA

Prof. Jon Whittle, Lancaster University, spoke on
Brainstorming Potential Attacks with Executable
Misuse Cases.

It’s no longer enough just to consider security at the
coding stage: you need to start with model-based
security engineering far earlier in development.
Relevant models include scenarios of various kinds, eg
using attack trees. Making such models executable
allows people to see attacks actually succeeding or
failing, which brings security concerns to life. “Red
teams” can then actively devise security attacks; results
can be fed directly into design models at an early stage.
Better, ways to handle attacks, once understood, can be
used again and again.

Misuse cases are use cases from the point of view of an
actor hostile to the system under design. Hence, misuse
cases are undesired behaviours that threaten existing
use cases, but can be mitigated by new mitigation
cases. By recording such cases and their relationships

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 9

 9

(threatens, mitigates), you can execute various possible
security scenarios.

For example, voters should not be able to vote many
times; should be able to remain anonymous; and should
have their votes recorded correctly. But quite simple
attacks are possible on all three of these requirements.
Whittle models the wanted scenarios using modified
UML sequence diagrams; but structured text or tables
could probably do a similar job.

Attacks are modelled in four parts: a) model the whole
normal story as an overview; b) model the modification
scenario the attacker needs to prepare to break in (eg,
reprogramming a smart card to ignore a disable
message); c) model the attack scenario itself; and
finally d) model a mitigation scenario to counter the
attack.

Of course, there might be other attacks; so you need to
repeat the later steps for each further attack you can
identify. Whittle has a tool (built on top of the IBM
Rational Software Modeler, including a use case
simulator and finite state machine generator, and a
generic aspect-oriented modelling tool) which
automatically composes the scenarios into the original
overview diagram(s). This seems to be useful for quite
a wide range of attacks – not all: for instance, attacks
that depend on knowledge of a specific data structure
can clearly only be modelled and countered at the
coding stage.

Case Studies

Alistair Mavin, Rolls-Royce, spoke on Using
Scenarios to Discover Requirements for Aircraft
Engine Control Systems.

Alistair Mavin with Airbus A380

Engine control systems operate in a harsh environment
– from -80 to +50 degrees Celsius, for instance; they
are safety-critical; stringently regulated; and must
provide ever increasing functionality on decreasing
development timescales. Rolls-Royce itself demands
more diagnostic and prognostic information.

A typical modern control system has built-in
redundancy with many sensors and dual channels to

ensure reliability, resulting in over 100,000 lines of
code developed with up to 20 suppliers.

It is easier for people to recognise stated requirements
than to recall unstated ones, so a tool (Art-Scene)
presents concepts and asks what-if questions about
possibly-missed requirements. Many of these turned
out to be typical HAZOP-type threats, so the tool’s
repository was extended with known hazards. For
instance “missing”, “lower”, “partial loss”, “reversed”,
eg “What if the temperature signal between
temperature sensor and control system is missing?” is
proposed as a possible exception.

As a case study, variable stator vanes (VSVs) can be
rotated to improve the efficiency and operating range
of an engine’s compressor. The tool guided a non-
specialist systems engineer to identify exceptions and
handle them with new (derived) requirements. It took 3
hours to go through the VSV scenario, and discovered
an average of 36 requirements per event (and record a
justification for each one). As a control for the study,
an experienced safety engineer used a traditional
HAZOP approach. That took 4 hours and found an
average of 20 requirements per event. The
requirements were more detailed, and were also found
earlier in development. It thus looks as if Art-Scene is
both quicker and more effective, using less experienced
people; but the set-up time was not included. It does
seem however that a multidisciplinary review of
requirements, design, and derived requirements is
justified; safety engineers are thus allowed to
concentrate on key system properties.

Future work will look at how to handle multiple
failures, and exceptions in all life-cycle phases (not
only operational use, for instance). On the tooling side,
the use of graphical representations, and possible
integration with a requirements management tool will
also be investigated.

Neil Maiden, City University London, spoke on Using
Storyboards in Requirements Processes.

Neil Maiden on Storyboards

Storyboarding was developed back in the 1930s film
industry with Walt Disney especially. Now the
technique is in wide use in film, theatre, “animatics”,

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 10

 10

business and interactive media. Storyboards are
popular in interaction design, and the same techniques
are equally valid in requirements discovery – indeed,
there is no reason for any barrier between these
disciplines, said Maiden. The interesting thing is not
what visualization techniques are used, but what they
can achieve, he suggested. They can support use cases
and scenarios; help in walking through interaction
designs as early prototypes; enable exploration of
business situations and contexts; and in expressing
complex concepts of operation.

Storyboards (one from Star Trek was shown) are
powerful, expressive (you could do a whole use case
like that), and immediate. The work involved would
usefully cause excessively fine grained detail to be
suppressed, leaving the main points at issue clearly
displayed.

Brainstorming is often proposed as a requirements
workshop technique, but in practice it is horribly
difficult to get much from such a session, as the outputs
are so unstructured. But with a storyboard to show
episodes, it is easy to group suggested requirements
under the relevant storyboard frames. This gives them a
context and rationale with little effort, making them
immediately comprehensible.

In a creativity workshop, giving people a template with
16 empty boxes to draw in and annotate below, it turns
out that people can readily combine drawings and
written ideas into a structured storyboard – creating
ready-structured scenarios much earlier than usual on
projects.

This has worked well in air traffic control, a very
conservative domain, where people demand something
more rigorous after the workshops. There is thus some
resistance, but people in that domain were willing to
accept rich storyboards – creating a model of their

entire system. The semantics for the storyboards were
invented by workshop participants: that way, they felt
they owned the technique and could accept it.

Workshops have already been critiqued as not cost-
effective. The CRIS creativity support tool encourages
people to think creatively through the images that
people have created and build stories around the
requirements from Art-Scene and the images from the
CombinFormation tool. This helps to capture the
benefit from workshops into individual work
afterwards.

Storyboarding is a simple, powerful requirements
technique, fitting well with scenarios and use cases, but
is rarely supported by development processes. It has
great promise and should be used more. New
technologies make it increasingly attractive both for
researchers and for industry.

The day ended with a Question Time panel session of
all the speakers.

The Question Time Panel

© Ian Alexander 2008

RE-verberations

Are PINs Less Secure than Signatures?
The February 2008 issue of Computer carries an
alarming article from Vaclav Matyas, Jan Krhovjak
and Marek Kumpost on an experiment concerning
“Authorizing Card Payments with PINs”. Chip-and-
PIN technology has been trumpeted by the banks as a
great leap forward in the fight against fraud.

Chip-and-PIN

The immediate consequence has been a drop in card
fraud in those countries such as the UK and the Czech
republic that use Chip-and-PIN. Card fraudsters seem
to have switched their attention to countries which still

rely on signatures, eg when UK cards are used outside
Europe.

But will this (relatively) happy situation last? The
researchers at the Brno University of Technology
suspected that PIN numbers used in shops might be
vulnerable to a simple attack: eavesdropping.

Worse, since banks put more faith in PINs than they
ever did in signatures – “the PIN was correct so you
must have authorized the transaction” – it has become
harder for customers to defend themselves against
illegal use.

Rather than simply asserting that this could be a risk,
the researchers set up a two-part experiment.

In part 1, they borrowed the university bookstore and
some student volunteers to see how easy it was to
discover a PIN in a shop environment. The store
contained 4 eavesdroppers, 3 experiment supervisors,
some hired bystanders, and two store assistants as well

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 11

 11

as the shoppers. The shoppers were told they were
subjects in a slightly different experiment – that it was
a survey of the relative comfort and convenience of the
two means of payment.

The results were startling.

Given a PIN pad with robust visual shielding around
three sides, the thieves guessed the PIN in 6 instances
out of 17 payments: a 35.5% success rate.

For the PIN pad without any shielding (still a very
common device in shops), the eavesdroppers correctly
guessed the PIN in 12 of 15 purchases (80%). 10 of the
PINs were guessed directly by individual observers; the
other 2 were assembled from the shared knowledge
(one observer was confident of the first 2 digits, etc).

For the signature-based transactions, the shoppers were
given half-an-hour to practice forging a signature
before going shopping for books. The merchants
discovered 12 of the 17 cheats: 8 at the first attempt,
and 4 more after challenging the shoppers for a second
signature. None of the control group of honest
shoppers was challenged to sign a second time. Both
the participants and the experiment supervisors felt that
the signature verifier did a good thorough job – it was a
person who had worked in a jeweller’s where checks
were more thorough than would be usual in a university
bookshop.

In part 2, the experiment was run using real payment
cards in a large supermarket, with the assistance of the
banks and suitable legal protection. Of the three groups
of eavesdroppers, PINs were guessed correctly in 25%,
27%, and 68% of cases. The third group included one
boldly assertive eavesdropper who managed to observe
shoppers from close range.

RQ suggests that your motto should be “caveat
emptor”. The new technology is helpful to the banks,
but apparently rather less so to shoppers. Shops are
much less secure places than banks, and shoppers are
far more tolerant of strangers coming up behind them
in shops. Perhaps our perception of the risk of losing a
PIN needs adjusting.

Systems Engineering in the News
The 28 March 2008 Newsnight programme with Gavin
Esler discussed the embarrassing launch of Terminal 5
at London’s Heathrow Airport with experts Heinz
Wolff and Allen Fairbairn. It certainly isn’t every day
that you see a systems engineer on the news.

Discussing How NOT to Open an Airport Terminal

The journalist noted that T5 is hardly the first big
system that has gone wrong, nor even the first airport
terminal to have terrible baggage-handling problems.
Denver Airport back in 1994 was the classic example.

Allen observed that large systems risk becoming
unmanageable through the complexity of interactions.
These can be of any type; the Airbus A380
“superjumbo” was delayed for two years by the sheer
difficulty of fitting 330 miles of cabling into the
airframe – it just took up more room than anticipated.
Perhaps the unglamorous nature of this problem is
typical – it isn’t enough just to focus on the exciting
technical challenges: we have somehow to achieve the
dilbertesque goal of “focussing on everything”.

A Systems Engineer on TV – you saw it here first

 “Do we delude ourselves?”, wondered Esler. Surely
yes: Hubris is followed by Nemesis. “One minute there
is pride, backslapping and praise for the new project;
the next there is chaos”.

The programme very sensibly avoided speculating
about the causes of the T5 debacle. Wolff wondered
whether gradual commissioning would not have
worked well, but he guessed it would have been very
expensive (though perhaps less so than what actually
happened).

RE-readings

Adrenaline Junkies and Template Zombies
Tom DeMarco, Peter Hruschka, Suzanne Robertson,
Tim Lister, Steve McMenamin, James Robertson

Dorset House, 2008

The members of the Atlantic Systems Guild have
published numerous books over the years, but this is
the first time they have written one all together. It is
hard to write a multi-author book, and most attempts at
it don't really work. Adrenaline Junkies does work, and
it speaks with a single voice. Whether that was

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 12

 12

achieved by one of the group's editing like crazy,
through the group's spending a weekend together, or
simply through having worked together for years, is not
stated. However it was done, the result is an attractive,
funny and easy-to-read small book of essays. In fact, it
is a compelling read; you sit and read one essay, muse
on it, and promptly read another.

This is a book of patterns, that in the way of such
things, you recognise but have never heard spoken. The
individual essays are quirkily titled, and each
illustrated by a photograph, drawing or graphic. These
work well, despite their diversity of graphic style and
relationship to their themes. The essays, too, vary
widely in length: the authors are bold enough to say
little where little is needed: another rare gift in today's
prolix world of blogs and citizen-publishers.

The only book that is remotely comparable to
Adrenaline Junkies is Michael Jackson's Software
Requirements and Specifications: a Lexicon of
Practice, Principles, and Prejudices. That, obviously,
had a single famous and highly experienced author,
who had himself created at least 3 software
development methods over the years. Jackson's book -
also a delight - is similarly a collection of essays, but it
is arranged as a Lexicon (A to Z, minus a few letters
here and there). Being a set of essays by one author, it
is delightfully or maddeningly one-sided, according to
taste; and it reveals Jackson's skill as an essayist - a
rare thing in the world of engineering. Sensing,
perhaps, that the alphabetic organisation feels quite
weak, Jackson suggests no fewer than 14 short tours -
paths through the book - on various overlapping
themes. He later wrote up one of these themes -
Problem Frames. Perhaps another 13 unwritten books
lurk just under the surface of the Lexicon.

Adrenaline Junkies, like Jackson's Lexicon, provides
much insight, with flashes of barbed humour. Its
authors, too, have created various software methods
and templates over the years. It too is in no particular
order, save that the authors have striven for "the most
enjoyable reading experience". There aren't any
suggested tours, because none stand out: you have to
find your own groupings or favourites. The "interlude"
of Project-Speak is simply a delight, but the deeper
pleasure comes from recognising the wicked portraits
of some especially clueless roles on projects. Who
hasn't met the project manager in Management by
Mood Ring who always talks in optimistic, eternal-
present tones with nary a mention of progress towards
targets or deadlines? And what about the Film Critics
who perpetually lob tomatoes into a project, with no
feeling of responsibility to help make it work any
better? Or Children of Lake Wobegon, where
everybody's performance rating is above average?!
Alistair Cockburn, quoted inside the front cover, is
right on the mark when he says "I suspect you will start
using these phrases in your work - I already have." But
I suspect that the patterns in this book, as in Jackson's,
in fact DO fit together: that Mood Ring management +

Film Critic staff + Lake Wobegon mis-mentoring =
Timid Organisation Planning For Failure, or
something. In other words, while each essay tells a
small truth, there may be larger syndromes at work
here - a few more books waiting to hatch.

It's a brave book, too, that dares to speak about
negative patterns that consultants see in organisations.
"The beatings will continue until morale improves" is
the self-confessedly "sour note" in Happy Clappy
Meetings: be happy, or else. Publishing that particular
pattern is a declaration that no corner of management
doublespeak is safe; this book speaks truth to power (as
the Quakers long ago said they would).

Other patterns that you will recognise with a certain
grim fascination include Short Pencil: "I hate working
for a company that makes you turn in a short pencil
before you can get a long one." I actually recall the flip
side of this awful pattern: our project team from a
software house found it could raise morale in our client
organisation by giving out handfuls of biros to people
who in all other respects looked like workers in a first-
world country; and this was England.

So strong is the impact of the negative, that it is the
essays describing positive patterns which stand out as
different. My first impression was that there were very
few of these, so it is with surprise that I see on looking
back through the book that there are plenty of them.
Poker Night praises doing something other than work
(anything, not just poker) together as a team. Food++
tells the same story, really, though food certainly
carries a special message of togetherness. I Don't Know
explicitly praises honesty (and Telling The Truth
Slowly, the anti-pattern, makes the reader wince: lying
is no good, but telling the truth won't make you
popular).

With so many patterns (there are 86 altogether), it's
inevitable that not everyone will agree with everything,
and this is certainly not a book afraid of controversy. Is
the Phillips Head screw really so much better than the
slot-head screw? Perhaps it's a matter of opinion: the
Phillips head makes power driving a practical option;
but it's really easy to grind the screw-head smooth with
a power driver; and, looking at the bigger picture, the
shockingly badly crafted furniture that passes for fitted
kitchens, bedrooms and studies nowadays owes a lot to
the replacement of craftsman-made dovetail joints with
cheap angle brackets and Phillips screws. Perhaps the
innovations favoured some stakeholders but not others:
more profit for the big retailers and their shareholders;
lower prices for consumers, perhaps; deskilling and
unemployment for the old craftsmen.

The book as a whole is confident and convincing. Few
other groups in the world today could have assembled
such a wealth of expertise in project management, and
none, perhaps, could have written about it so
engagingly. I think you'll enjoy reading it. If you're in a
position of power, I hope you'll take it to heart.

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 13

 13

Guide to Requirements SL-07
Template with Examples

Soren Lauesen

Lauesen Publishing, 2008

Lauesen has already shown himself to be a capable
teacher of both requirements and user interface design.
With this new booklet, he reveals his intensely
practical side. The Guide, Template and Examples is a
slim volume that follows the ancient teacher's maxim:
Show, Don't Tell. The Guide is essentially just a short
description of what each part of the Template is about.
The Examples are from a real project and cover
functional as well as non-functional requirements.

The odd title, by the way, is simply "Soren Lauesen,
version 2007" - new versions will be issued and
published as necessary, incorporating reader feedback
and experience. That desirable process could only be
accomplished by Lauesen's publishing the book
himself.

There is no flowery rhetoric here; little theory; and no
academic bibliography at all: pretty remarkable for a
university professor. Instead, you get a compact,
practical guide to what to put in your requirements
specification, at least, if your project is for software -
most probably of the data-handling variety - and you
share Lauesen's concern to write down clear
requirements to communicate a large customer's wishes
directly to a supplier (a software house). In other
words, this is a book specially for work of the copy,
study, and edit kind, for what used to be called "user
requirements".

Actually, it is rather more than that. Each chunk of the
Template has a column for the (customer's)
requirements on the left, and a column for the
"Proposed solutions" to its right. The customer is, in
other words, invited to write down what he expects or
suggests in the way of a possibly-workable solution.

This is rather a wise move on Lauesen's part, because
customers frequently come up with solutions rather
than requirements.

The template coaxes them into moving such things into
the "proposed" category, leaving the requirements field
invitingly blank. Of course, that invites reflection: what
must our requirement be, if that is what we think our
solution will be like? With any luck, it will be a clear
statement of stakeholders' goals, which will help the
supplier mightily in understanding what is in fact
wanted.

Lauesen's examples are nearly all from a healthcare
project. Together they add up to a complete
specification, except that only some of the use cases,
some of the data classes, and some of the integration
requirements are described. They quietly convey the
message "this is how I did the requirements on this
project". People have been pleading for such a book
for years.

Some cautions are in order. The template does not
attempt to cover "system" and "subsystem"
requirements that might be written by the supplier and
perhaps his subcontractors, once the architecture and
scope are known. No attempt is made, either, to cover
domains other than software, so there is scope for more
templates and matching guidance if you know a good
way of writing requirements for other kinds of product.

Finally, this is not a book of processes and techniques:
it does not teach you how to identify your stakeholders,
model people's goals, narrate their scenarios, or much
else. But what it does do, it does supremely well, and it
has its niche to itself.

This is a really good and valuable contribution to the
industrial literature on requirements. In a sense, it is a
coming-of-age: requirements work is growing up, and
Lauesen has given the world a serious, quiet, practical
guide to help people get better results from their
projects. The template itself can be freely downloaded
from Lauesen's website, http://www.itu.dk/~slauesen.

Lauesen’s Template provides an inviting space to capture both requirements and solutions

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 14

 14

RE-partee

The Dog shall be Compatible with Owner

It’s Me or the Dog, by Victoria Stilwell
Which dog does she look like, then?

Updated Definitions File
Stockholder – person who has an interest in a
company
User Case – user who always writes in with a long list
of software bugs
Object – to complain at a software product review
Class – elegance and stylishness in a software product
Goal – a score! A spectacular sales success
Quality – you can’t measure it, but you know it when
you see it
Metric – measuring things in kilos rather than pounds
Performance – remarkably good speech by the CEO at
the AGM
Usability – condition of an electronic product before
the boys have played with it
Evolutionary Development – improvement in dress
sense of male team member now he has a steady
girlfriend
Misuse Case -
 (Russian) (not kidding, honest)

Updated Lamp-post Joke
When RQ was young, there was a joke that ran:

“What do you say when you walk into a lamp-
post?”
“Excuse me!”

This was presumably funny because
a) the British used to apologise about everything
b) you have to be quite short-sighted not to notice a

20-foot tall post, and short-sightedness was
popularly supposed to have been caused by
something that it wasn’t British to mention.

But times change. With so many walkers, cyclists and
motorists now focusing on tiny screens instead of
looking where they are going, the problem seems to be
lack of attention to the peripheral visual field: in other
words, trying to text and walk at the same time.

It has become an epidemic. It is alleged that 6.6 million
accidents of the invisible lamp-post variety happened
in Britain last year, or about 1 for every ten people.

It used to be said of US President Gerald Ford that he
couldn’t chew gum and walk at the same time. This
was grossly unfair because he could do it perfectly
well. It was just that he couldn’t do the two things out
of time, like trying to brush your teeth and pat your
head simultaneously but at different speeds.

It was said, conversely, of the great drummer Ginger
Baker (he of the incredible 13-minute drum solo in
Toad on the Cream album Wheels of Fire) that he
could do 19 beats with one drumstick to 20 beats with
the other, thus achieving a secondary “beats” effect
when the two rhythms added on every 19/20 beats (or
interfered constructively, if you’re a physicist).

Padded Lamp-post, for bumping into

It seems that the Great British Public have abilities that
are more Fordesque than Bakeroid.

Various technical solutions have been proposed,
including:

• padded lamp-posts (see photograph),
• ultrasonic or radar lamp-post detectors on mobile

phones,
• talking lamp-posts,
• head-up displays to let people look up while

texting, and best of all
• a vibration detector that disables texting when the

phone is jiggled about as if the owner is walking.

Switching the thing to “off” (see Glossary for
explanation) seems not to be an option.

Requirements Quarterly RQ48 (June 2008)
The Newsletter of the BCS RESG Page 15

 15

RE-sources

Books, Papers
RQ archive at the RESG website:
http://www.resg.org.uk
Al Davis' bibliography of requirements papers:
http://www.uccs.edu/~adavis/reqbib.htm
Ian Alexander's archive of requirements book reviews:
http://easyweb.easynet.co.uk/~iany/reviews/reviews.htm
Scenario Plus – free tools and templates:
http://www.scenarioplus.org.uk
CREWS web site:
http://sunsite.informatik.rwth-aachen.de/CREWS/
Requirements Engineering, Student Newsletter:
www.cc.gatech.edu/computing/SW_Eng/resnews.html
IFIP Working Group 2.9 (Software RE):
http://www.cis.gsu.edu/~wrobinso/ifip2_9/
Requirements Engineering Journal (REJ):
http://rej.co.umist.ac.uk/

RE resource centre at UTS (Australia):
http://research.it.uts.edu.au/re/
Volere template:
http://www.volere.co.uk
DACS Gold Practices:
http://www.goldpractices.com/practices/mr/index.php

Software Requirements Engineering Articles (India):
http://www.requirements.in

Media Electronica
RESG Mailing List
http://www.resg.org.uk/mailing_list.html
RE-online
http://discuss.it.uts.edu.au/mailman/listinfo/re-online
ReQuirements Networking Group
www.requirementsnetwork.com
RE Yahoo Group
http://groups.yahoo.com/group/Requirements-Engineering/

RE-actors: the committee of the RESG
Patron:
Prof. Michael Jackson,
Independent Consultant,
jacksonma @ acm.org

Chair:
Dr Pete Sawyer,
Lancaster University,
sawyer @ comp.lancs.ac.uk

Vice-chair:
Dr Kathy Maitland,
University of Central England,
Kathleen.Maitland @ uce.ac.uk

Treasurer:
Steve Armstrong,
The Open University,
S.Armstrong @ open.ac.uk

Secretary:
Dr Lucia Rapanotti, Computing
Department, The Open University,
l.rapanotti @ open.ac.uk

Membership secretary:

Yijun Yu, Y.Yu @ open.ac.uk

Publicity officer:
William Heaven, Department of
Computing, Imperial College,
wjh00 @ doc.ic.ac.uk

Newsletter editor:
Ian Alexander, Scenario Plus Ltd,
iany @ scenarioplus.org .uk
Newsletter reporter:
Ljerka Beus-Dukic, University of
Westminster,
L.Beus-Dukic @ westminster.ac.uk

Student liaison:
Dalal Alrajeh, Imperial College,
dalal.alrajeh@imperial.ac.uk

Immediate past chair:
Prof. Bashar Nuseibeh,
The Open University,
B.Nuseibeh @ open.ac.uk

Industrial liaison:
Suzanne Robertson,
Atlantic Systems Guild Ltd,
suzanne @ systemsguild.com
Alistair Mavin, Rolls-Royce,
alistair.mavin @ rolls-royce.com
Dr David Bush, NATS,
David.Bush @ nats.co.uk

Members without portfolio:
Prof. Neil Maiden, Centre for HCI
Design, City University,
N.A.M.Maiden @ city.ac.uk
Emanuel Letier, University College
London, e.letier @ cs.ucl.ac.uk
Sara Jones, City University,
saraj @ soi.city.ac.uk
James Lockerbie, City University,
ac769 @ soi.city.ac.uk

Contributing to RQ

To contribute to RQ please send contributions to Ian Alexander (iany @ scenarioplus.org .uk). Submissions must be in
electronic form, preferably as plain ASCII text or rtf. Deadline for next issue: 7th September 2008

Joining the RESG

Visit http://www.resg.org.uk/ for membership details, or email membership-RESG@open.ac.uk

