

Requirements Quarterly
The Newsletter of the

Requirements Engineering Specialist Group
of the British Computer Society

 1

© 2005 BCS RESG http://www.resg.org.uk RQ38 (December 2005)

Contents

RE-Soundings 1
From the Editor 1
Chairman´s Message 1

RE-Treats 2
Scenarios, Stories & Use Cases Day 2
Problem Frames 2
AGM and Distinguished Speaker Event 2
IEE/RESG Requirements Days 2
Early Aspects 3

RE-Calls 3
Electro-Technology Research Prize 3
Mastering the Requirements Process 3
System Safety 3
A Free Trip to RE’06 for a Student AND
for Someone in Industry 3

RE-Readings 3
RE for Dependability 3
IEE Forum on Autonomous Systems 4

RE-Papers 9
But Is It Engineering? 9

RE-verberations 11
Why IT Projects are Different 11
Safe Social Intercourse 11
Yesterday’s Weather 12

RE-flections 12
One Counter-Example Is Enough 12
Special Guest Proverb 14

RE-Publications 14
What Engineers Know And How They
Know It 14
Competitive Engineering 15

RE-Sponses 17

RE-Membering 17
Peter Drucker, the First Management
Guru 17

RE-Sources 18
Books, Papers 18
Mailing lists 18

RE-Actors: the committee of the RESG 18

RE-Soundings
From the Editor
In this issue, we are delighted to include a reflective
article from our Patron, Professor Michael Jackson, on
Requirements ‘Engineering’. Some of us have always
been a little doubtful about the E in RESG – more
propaganda than substance perhaps. Read the article
and see what you think (and then send us a letter about
it!).

We have an exciting series of events planned for 2006:
we hope to see you there. Coming along very soon is
Scenarios Day on the 9th of February. This event
combines a morning tutorial with an afternoon of talks
from experts in an intentionally wide range of uses of
scenarios.

Meanwhile, this issue reviews two interesting and very
different books, reports on not one but two events

related to dependability requirements (safety, security,
survivability, and the like), reflects on the news this
year, and looks at the evidence for why requirements
are needed.

Have a very happy Christmas.
Ian Alexander,
Scenario Plus

Chairman´s Message
The final RESG event of 2005 seems like a good way
to bring the year to a close. In part that’s due to the
Dependability event at Newcastle (see Ljerka Beus-
Dukic’s review later in this issue) being the first event
successfully organised by me, so it’s nice to have
broken my duck.

More significantly, perhaps, is the fact that the event

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 2

 2

reminded us of the importance of understanding the
wider environment in which systems operate. The
discovery and expression of safety and security
requirements through hazard analysis and threat
identification requires us to think hard about the
context and environment of the proposed system.

Safety and security are just properties of systems that
happen to have stimulated much creative work on how
to analyse problems and their context. The same
concern, to understand all we can about the problem
context, should drive all system development that
involve significant risk, whether financial, to
reputation or whatever.

The trouble is we can’t know everything about
problem spaces and some things have to be taken as
articles of faith. We owe a debt to Donald Rumsfeld,
for the clarity of his exposition of this phenomenon.
He noted that the environment might contain:

• known knowns: things we know we know – like
the stopping distance of a train of mass A, velocity

B, track gradient C and the presence of leaves or
ice.

• known unknowns: things we know we don’t
know. The key here is to recognise our ignorance
and derive requirements that provide mitigation. It
isn’t possible to be sure what form the next
security attack on our system will take, so this
missing knowledge might motivate, for example,
intrusion detection and recovery requirements;

• most pernicious of all are the unknown unknowns:
things we don’t know we don’t know.

Perhaps what’s needed is an analogue of safety
engineering’s ALARP (As Low As Reasonably
Practicable) principle that, instead of classifying risk,
classifies what we know (and thereby, indirectly, risk
also) - AKARP.

Have a happy Christmas and a New Year free of
unknown unknowns.

Pete Sawyer,
Computing Department, Lancaster University

RE-Treats
For further details of all events, see www.resg.org.uk

Forthcoming events organised by the RESG:

Scenarios, Stories & Use Cases Day
Thursday 9th February 2006

Northampton Suite, City University, London

This one-day event combines a morning tutorial on
developing Scenarios (as Use Cases) given by Ian
Alexander and Neil Maiden, and an afternoon panel of
4 distinguished speakers who will give talks on
applications of Scenarios and Use Cases in industry.

The morning tutorial will cover the theory and practice
of scenario use, including storytelling, capturing goals
and sequences, discovering exceptions, and validating
scenarios with role-play and structured walkthroughs.

The afternoon talks and speakers are:

• Sebastian Uchitel (Imperial College) on
Executable Scenarios

• Helen Sharp (Open University) on User
Stories for Agile Software Development

• Peter Haumer (IBM Rational) on Use Case-
based Software Development

• Stuart Burdett (Defence Science &
Technology Laboratory, DSTL) on Using
Scenarios to Develop Future Military
Systems.

Refreshments and lunch are included in the tutorial
price. Tutorial participants receive a copy of the book
Scenarios, Stories, Use Cases. The afternoon session is
free to RESG members.

Contact and Registration N.A.M.Maiden @ city.ac.uk

Problem Frames
May 2006, Open University, Milton Keynes

AGM and Distinguished Speaker Event
July 2006, London

IEE/RESG Requirements Days
2nd October 2006, IEE, Savoy Place, London: 8 talks
covering all the essentials of requirements work,
followed by a Banquet.

3rd October 2006, IEE, Savoy Place, London: 1-day
Introduction to Requirements seminar. presented by
Ian Alexander.

‘User’,
Stakeholder

Requirements
Engineer

Developer,
Tester

Configuration
Manager

Design

Test

Prioritise

Formalise

Validate

Launch

Manage
the

Requirements
[ok]

Elicit

Prototype

Standards,
Regulations,

Reuse Library

This seminar introduces requirements as a process of
seven main steps, each supported by practical
techniques, which are taught through group exercises.

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 3

 3

The message of the course is that your organisation
can take simple, cost-effective steps to do its
requirements better.

http://www.iee.org/Events/intro-req.cfm

Early Aspects
October 2006, Lancaster

RE-Calls
Recent Calls for Papers and Participation

Electro-Technology Research Prize
The Royal Academy of Engineering is asking young
academics and postgraduate researchers to put forward
research proposals that can be exploited in the UK in
the field of electro-technologies, including
instrumentation IT, software and hardware. The
winning individual or team will receive £10,000 to
spend on themselves and £30,000 to develop the
proposal.

http://www.raeng.org.uk/prizes/era

john.stephens@hq.bcs.org.uk

Mastering the Requirements Process
20-22 February 2006, London

presented by Suzanne Robertson, Atlantic Systems
Guild

This 3 day seminar & workshop presents a complete
process for eliciting the users' requirements, testing for
correctness and recording them clearly,
comprehensibly and unambiguously. Delegates will
learn to:

- Determine their client's needs, exactly
- Write complete, traceable and testable requirements
- Precisely define the scope of the project
- Discover the stakeholders and keep them involved
- Get the requirements quickly and incrementally

http://www.irmuk.co.uk/1

System Safety
The 1st IEE International Conference on System Safety

6-8 June 2006, The IEE, Savoy Place, London

System safety engineering (SSE) is the discipline
concerned with achieving and assuring safety of
systems, including their hardware, software and human
elements. It encompasses, but is broader than,
Functional Safety as it is concerned with hazards
arising from physical causes, e.g. toxic materials and

uncontrolled energy sources, as well as functional
failures.

There are many challenges for SSE caused by changes
in technology, increasing complexity and inter-
working of systems, and reductions in the acceptability
of risk to the public. SSE has to deal with these
challenges – both societal and engineering – to ensure
that deployed systems are acceptably safe, and remain
so throughout their life.

A Free Trip to RE’06 for a Student AND
for Someone in Industry
The RESG would like to encourage its UK members to
join in the major Requirements event of the year (and
this newsletter has always urged you all to attend -
Ed.)

RE’06 will be held in Minneapolis, USA next
September. We know that seems far away, so we are
offering substantial help for one research student and
one person from industry to get to Minneapolis.

For students: please submit a poster of your current
research to the RESG student representative.

For people in industry: please write to the committee
explaining why you would like to attend RE’06.

The winning entry in each category will receive £500
(this may be supplemented if necessary for the student)
in return for proof of travel expenses.

We would also like to encourage you to submit papers
and tutorial proposals to the conference. We would be
happy to ‘mentor’ you through the writing process,
though of course we cannot guarantee the outcome.

Student Contact: Zachos Konstantinos, City
University, kzachos @ soi.city.ac.uk

Industry Contact: Dr Pete Sawyer, Computing
Department, Lancaster University,
sawyer @ comp.lancs.ac.uk (who will select the most
suitable member of the committee to help you).
The RE’06 website is at
http://www.ifi.unizh.ch/req/events/RE06/index.html

RE-Readings
Reviews of recent Requirements Engineering events.

RE for Dependability
University of Newcastle upon Tyne, 7 December 2005

The meeting, hosted by the School of Computing
Science, started with a lavish lunch (thumbs up,
hosts!) which got us all well prepared for the bleak
prospect of being stranded at a cardiovascular
department in an NHS hospital waiting to be rescued

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 4

 4

by firefighters. [See account of Chris Johnson’s talk
below for explanation. - Ed.]

For those of you who are not at home with the term
dependability here is a brief definition:

“Dependability is the system property that
integrates such attributes as reliability, availability,
safety, security, survivability, and maintainability.”

The first speaker, Charles Haley from the Open
University, gave a talk on “Arguing Security:
Validating Security Requirements using Structured
Argumentation”. His talk was about security RE:

• determining intentional behaviour in problem
space that can lead to harm

• adding requirements to mitigate the
possibility of harm

• validating that these requirements serve the
intended purpose

How do you determine an intention? Haley’s answer
is:

“Understand the context!
Know and test your assumptions!”

In order to prove that system satisfies security
requirements, the OU’s Security Requirements Group
added satisfaction arguments and trust assumptions.
Claims about system behaviour or environment are
either argued (satisfaction arguments) or not argued
(trust assumptions). Satisfaction argument structure
(inner part) is based on Toulmin argumentation using
grounds, warrants and rebuttals as claims.

[We’ll have a review of Stephen Toulmin’s classic
book The Uses of Argument (1958) in the next issue of
RQ. We reviewed Visualising Argumentation by
Kirschner, Buckingham Shum, and Carr, making use
of Toulmin argumentation, in RQ29. - Ed.]

The role of arguments is to expose assumptions which
are security killers.

David Bush (UK National Air Traffic Services) talked
about “Early lifecycle hazard identification using i*”.
His interest in determining protective safety
requirements as early as possible, led him to a
pioneering use of the i* approach. He combines i*
with hazard and operability analysis (HAZOP).
Identifying hazards early in system development offers
scope for hazard removal, reduction and mitigation
before requirements and design are committed.

Bush reported that use of i* greatly increased the
number of hazards he was able to identify. Further,
because it allowed problems to be expressed in terms
of the problem domain, it was well received by key
stakeholders

Chris Johnson, from the University of Glasgow,
started his talk (Learning the Lessons of Hurricane
Katrina: Developing Large-Scale Simulations for
Hospital Evacuations) by showing interactive

simulations of building evacuations. It was soon clear
why he and his research group are interested in
analysing and learning from past accidents: evacuation
plans and live drills often provide a limited range of
disaster scenarios. In his highly animated talk, Johnson
pointed out some of the real scenarios which occurred
during the evacuation of New Orleans hospitals.
Events in New Orleans exposed the difficulty in
extending human behavioural models from other
public buildings (e.g. office blocks, entertainment
complexes) to hospital evacuations.

While Haley and Bush are concerned with top-down
analysis of and reasoning about the environment to try
to identify the security threats/safety hazards,
Johnson’s approach is to do bottom -up analysis of
actual incidents to establish causality. An interesting
thing might be, while in principle the two approaches
are complementary, in practice how well can we
integrate top-down and bottom-up approaches like
these?

The last talk was given by David Greathead from the
host university. His talk on “DIRC and the
Psychology of Programming” clearly illustrated that
DIRC is a multi-disciplinary project, bringing together
researchers with different backgrounds (in this case,
computer science and psychology). As part of the
Diversity research theme, David Greathead’s and Cliff
Jones’s work looks for a link between personality type
and code review ability.

Different personality types were identified using the
Myers-Briggs Type Indicator which profiles
personality along Jungian lines, based on four bipolar
preferences (e.g. Thinking/Feeling, Sensing/Intuition).

Comparison of NT (iNtuition/Thinking) and non-NT
students has shown that NT students performed
significantly better at code review tasks.

These encouraging initial results will perhaps
strengthen their intention to look for other areas of
software development which may be linked to
personality. One might ask a question (and I did) what
is this to do with dependability? The answer was in fact
given at the beginning of the talk: DIRC is concerned
with the dependability of computer-based systems
including hardware, software and people.

Despite scary stories linked to dependability (or better,
lack of it), all participants left quite cheery. Perhaps,
those strawberries perversely dipped in white
chocolate, did a trick.

 © Ljerka Beus-Dukic 2005

IEE Forum on Autonomous Systems
Savoy Place, London, 25 November 2005

Stuart Arnold (of QinetiQ, and chairman of the IEE’s
Systems Engineering PN) welcomed everybody to the
meeting. The theme of the meeting was that by
removing humans from the control loop, we could
focus on new attributes of systems.

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 5

 5

Bill Bardo of the Defence Technology College (DTC)
gave a brief Keynote talk, entitled Directing
Autonomy.

Autonomy is not only about vehicles, said Bardo, but
also about sensors that can operate autonomously.
Levels of autonomy range from 1 (human operated), 2
(human assisted like antiskid brakes on a car), 3
(human delegated, like engine controls) right through
to 6 (fully autonomous). The only fully autonomous
systems are the space probes with which we’ve lost
contact — they’re truly on their own unless they’ve
picked up some alien friends, Bardo quipped.

Autonomy levels can equally be considered as a matter
of levels of modelling from abstract and close to the
user (world models, planning) via behavioural
autonomy to concrete, “high fidelity” models enabling
vehicles to control themselves.

The SE process might have to change for such
systems. The DTC aims to do this both via specialised
research into algorithms, planning, sensors,
communications and control, power, and SE itself —
bottom up or “technology push” and via a well -
organised team to work on SE projects. The MoD
provides the “project pull”, demanding capability and
providing “vignettes” — scenarios where systems
would be needed.

The DTC aims to demonstrate that its research is
useful rather than hoping that people will read its
reports. Demonstrations could range from large-scale
integrations and those using linking “threads” (ie
scenarios again), through theme-level demos of
different algorithms, sensors, etc, down to small demos
by individual projects.

Other theories and systems — fractals, chaos, biology
for instance — have important lessons for SE. Energy-
using systems like animals and vehicles behave
differently from systems at energy equilibrium (as
Prigogine showed, said Bardo). Similarly, Shannon’s
law sets limits on information handling. Even quantum
theory applies as it contradicts Shannon to an extent;
all these things are now converging. Clearly SE is
being considered at a deep level.

Joanne Thoms (DTC) spoke on Autonomy: Beyond
OODA? She quoted the OED’s definition of
autonomy. This implies self-governing, imposing rules
on itself because it understands what is going on. The
OODA loop of Colonel Boyd is Observe, Orient,
Decide, Act, and “it works”. This provides closed -loop
responses to observed events; it can’t cope with
multiple platforms, or future plans of the opponent, or
long-term effects or indirect implications of its own
actions.

OODA does not address human attributes like cultural
traditions, genetic heritage, previous experience. Nor
do we know if providing these would be useful for our
goals. Wisdom is, she said, dealing with “known
unknowns”.

To orient well, our systems must be able to

• Perceive sensory stimuli;

• Predict and understand consequences of their
own actions.

They’ll then be able to

• Deliberate on current problems to make plans
and achieve their goals

• Effect results.

But if we can’t predict the actions of autonomous
systems, how will we trust them? And if we can’t trust
them, will we use them? Going beyond human control
is a big step, she observed. “I don’t know how we will
understand self-organising systems”.

The basic capabilities do match the OODA loop quite
well, but Deliberation covers the entire process, and
goes beyond it.

Ian Alexander asked if we needed to ask for facilities
to look “inside the box”, to see what decisions the
systems were making; back in the 1980s AI systems
tried to be reflective, to report on themselves. Thoms
replied that the challenge was to find a way that wasn’t
swamped in detail to articulate autonomous decisions,
that related to understandable (abstract, human-level)
goals.

If we give machines the ability to reason, how will
they feel about being turned off? (Shades of Asimov).
How much trust will they have in us, she asked.
Evidently Thoms is not a narrowly siloed thinker and
researcher.

Research now is different from AI; it needs to bring
together different disciplines to succeed, but we don’t
yet know which ones we need, said Thoms. A rule-
based system demands an exact answer; but we need a
good-enough answer, not an optimal one. When
multiple decisions all interact with each other (say 28
tactical processes and 12 longer-term ones), rules
alone are not sufficient.

Duncan Priestley (Loughborough University) spoke
on an Architectural Approach to the Challenges
Arising from the Exploitation of Autonomous
Systems. Warfare is changing: it’s more often
asymmetric (like guerilla warfare); it has a rapid
tempo, demanding agile platforms that interact
effectively with each other. This means that the
environment changes too, making it non-deterministic.
Decision-making is thus both necessary and difficult.
Situational awareness must improve. How can we use
autonomous systems in such a space? We can’t just
replace manned vehicles without trust, as Thoms said.

We need to evaluate designs in terms of core “ –ility”
requirements like survivability, interoperability, etc,
said Priestley. This is a separate research goal.
Architectures claim perceived benefits such as
enhanced decision support, but these are hard to
demonstrate. Vignettes including search-and-rescue
scenarios (helicopters from a carrier respond to a call
from a downed pilot in hostile territory…) provide a

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 6

 6

way of exploring the issues objectively. This is
somewhat like the OODA loop but closer to old-
fashioned wargaming and simulation. An event occurs,
you observe and monitor leading to your recognising
that the event has occurred, you evaluate the situation,
determine your options, evaluate them, and finally
choose one and implement it (before a deadline). You
can try to save time on all of these steps except the
last.

To do that, you need to evaluate competing
architectures. The evaluation criteria depend on the
scenario. Sometimes, interoperability, timeliness and
flexibility may be key, eg flood rescue; in other
scenarios such as anti-guerilla operations, security,
speed and survivability may be the most important.
Then the benefits can be scored (red for making
scenario steps worse, green for better) by analysing
scenarios as trees (a sequence of large goals
decomposed into smaller steps) and colouring each
node. A largely green tree means that architecture
worked better than its rivals.

MoDAF and DoDAF are very deficient in decision
support, said Priestley. We want to add something on
to the side of those.

Phil Sutton (Director-General of Research &
Technology at the MoD) spoke on the MoD’s research
agenda. He showed no PowerPoint slides (a rare thing
nowadays). There are powerful destabilising forces in
the world today. We mustn’t “fight the last war” but
need to focus on the value of human life and the issues
today. This places a high responsibility on all of us
who support the front line. MoD wants to work with
the very best people, you (in this room), he said. We
need to focus on what really matters: helping our
forces to do their job in difficult circumstances, as well
as possible and with minimum loss of human life. We
want to develop new ways of collaborating with
industry.

Joanna Thoms asked his view on autonomy and
defence Lines of Development (LoD). Sutton replied
that autonomy in its extreme form must change the
way we do everything.

Eric Nettleton (BAE Systems) spoke on ANSER Past
and Present: Multi-UAV Experimental Research.
(ANSER is Autonomous Navigation Sensing &
Experimental Research.) He made everybody laugh by
showing a film of a UAV (Unmanned Aerial Vehicle,
in this case the Brumby aircraft) that first chased a cow
off its grass runway and then took off and did
aerobatics.

Decentralised Data Fusion (DDF) looks at the problem
of sensor fusion in a network. Each sensor is
connected to a processing node that communicates
with its neighbours. Each node ends up with the same,
fused picture of what all the sensors have discovered
about the situation. Trials have gone up to 8 nodes;
simulations work up to thousands. To achieve such
scalability, you have to manage bandwidth
intelligently — there is never enough for everything.

DDF does not communicate raw sensor information
(that would scale with the number of sensors) but
processes it first. Each node also only has to know
about its neighbours, again saving much bandwidth.

Brumby flies at 100 knots and weighs 45 kg at takeoff;
its wingspan is nearly 3 m and its endurance is up to
115 minutes. It has basic sensors for rudder, aileron
etc, and two mission sensors: a black-and-white
camera, and a millimetre-wave radar or a laser/vision
system. Each mission sensor has its own processor and
communications hardware, ie it is a completely
packaged node. ANSER 1 uses its sensors and
processing to build up a composite picture or map of
the environment. Information is pressed in a fusion
loop; new information is additive, an attractive and
important property. This makes it fast as well. Each
node subtracts out what is being reported from what it
knows: the difference is what is new.

In trials the experimental targets were white plastic
squares 3’ on a side; wombat holes also proved good
natural targets for recognition. Four aircraft together
built up a tactical picture. This is quite hard to
represent as a process. It was illustrated with a
simulated terrain map over which the planes could be
seen flying; each target was displayed as a white
square inside an ellipse of uncertainty in position: the
ellipses visibly shrank as more information was
collected. The processing was all done on board on
modest 266 MHz CPUs. The targets were identified
with simple Calman filters.

Newer work is more general, allowing for recognition
of more complex objects. The challenge remains to
minimise communication load, eg not sending a
million points to represent a probability distribution.
Work is also progressing on classifying targets rather
than just recording their position and velocity.

Hani Hagras and Martin Colley (University of
Essex) spoke on Collaborating Multi-Robotic Agents
for Operations in Inaccessible Environments. That
includes underwater, in drainpipes etc as well as
rugged places and battlefields. In such places you need
small robots that can navigate autonomously, using
little power and communicating over small
bandwidths.

Identical miniaturised robots with limited capabilities
collaborate to form a team. Each agent uses a
biologically-inspired Spiking Neural Network (SNN).
SNNs resemble neurons that deal with sensory-motor
patterns (as streams of spike voltages called action
potentials by biologists) with very little power and
bandwidth; hence, neural networks can be simple and
small. Because these work well in animals, they should
do the same for robots.

Colley looked at making robots to work in small tubes
such as oil refinery cooling pipes. These are subject to
buildup of lime scale, which can block the pipes, so
robots go inside to look for it. The smallest robots are
about 25 mm on a side. They can detect scale by
measuring local pH (acidity/alkalinity); this is just one

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 7

 7

example of the sensors that could be carried. When a
robot detects no faults it wanders randomly; when it
finds a fault (an alkaline region) it stays close to it
(perhaps spiralling inwards) and signals to other robots
to approach. Processing power is strictly limited as at
this small scale you can’t dissipate much heat.

We can reflect that this approach is strikingly similar
to the behaviour of pond invertebrates. Perhaps robot
evolution is recapitulating billions of years of
biological evolution.

Moira Smith (Waterfall Solutions, which runs some
research projects at the DTC) spoke on Fundamental
Design Issues in Co-operative Autonomous Vehicle
Systems, especially concerning sensors. These include
underwater and other platforms, not just UAVs. There
are many technology challenges as other speakers
including Bill Bardo have indicated.

Imaging could be by Synthetic Aperture Radar (SAR)
but affordability is a concern for all AVs. “Cheap”
may be a matter of opinion in defence systems
(laughter) but it is a key issue for research. For
instance, motion causes linear optical flow (and blur);
forward motion and roll causes diagonal flow. The
image blur from such effects can be reduced by
applying image processing (convolution filters) to
recover sharp images.

Other challenges include maximising coverage of
search space, and covering a whole area with the
minimum of AVs and time. These require algorithms
for guiding search and for collaboration among agents.
Contrary to common belief, egistering images still
remains a hard problem, said Smith. Registration gets
hard as sensors move further apart; vibration,
aberrations and different sensor modalities add
complexity. New algorithms can do better than
traditional ones. Results need to be presented readably.
This might be by 3D imaging, cartoon diagrams or
other means: an interesting research topic.

Dewi Jones (University of Wales) spoke about using
UAVs to inspect power lines. There are 1.5 million
wooden poles supporting 150,000 km of 11kV power
lines. All have to be inspected regularly for large scale
effects — sagging spans, leaning poles, and tree
encroachment. Medium scale effects include pole-
mounted equipment; small scale problems include
shattered insulation … especially when wet. Birds can
nest atop poles. Foot patrols, pole climbing (rare) and
manned helicopter patrols are slow or expensive (or
both). Helicopters have to fly 5 to 10m above live
lines. Their surveillance could be enhanced with video
cameras but that isn’t usual today. Video gives better
post-mission analysis than eyeball inspection; images
can go into the company database; and job planning
improves.

UAVs represent a next step from manned helicopters,
offering more frequent missions and hence faster
turnaround, lower costs (1/3 of manned helicopter’s),
and better data too. Unfortunately the CAA regulations
do not allow UAVs to be operated out of sight of a

human operator (1.5 km); up to 15 km is needed to
make sense. Robotic “see and avoid” using machine
vision is essential for safe and reliable operation.

An alternative idea would be a rotor craft (perhaps a
ducted fan device like a tiny hovercraft) that picks up
its power from the lines and hover along slowly over
the lines. It is essentially tethered. As it can’t fly
without power it is impossible for it to fly off and
cause danger elsewhere; it’s not flammable; the blades
are shielded; the electric motor is very quiet (so it
won’t frighten farm animals). It has a long range. And
since it’s constrained it can’t be used to infringe civil
liberties eg by filming people.

How could this be realized? It has to maintain its
position relative to the lines. It has to keep its power
pick-up in contact with the lines. It has to negotiate
obstacles eg to turn on to a spur line, so it must fly
freely for brief periods.

The requirements for visual power-line inspection are
thus well-defined. They are quite unlike those for a
battlefield UAV, and the vehicle proposed is quite
different. Perhaps this means that autonomous systems
research needs to proceed on many separate fronts
rather than hoping for one universal solution.

Paul Newman (Oxford University) spoke on
Automating Answers to “Where am I?”. Mobile
robotics will become ubiquitous, he said, as research
advances among groups all over the world (he thanked
his many international collaborators). Learning,
moving and perceiving are all still “fiendishly hard”
problems. But navigation remains an issue at the heart
of robotics. “All higher level operations are dependent
on location information.” Newm an thinks that planting
markers all over the world isn’t the answer. We
navigate using the world itself to localise ourselves.
SLAM, Simultaneous Location and Mapping, aims to
find where the robot is in real time. Researchers now
understand how to do this. A robot walks the corridors
in MIT, scanning with its laser, and developing a 3-D
map in real time, locating itself (with an uncertainty
ellipse around its image of itself) as it goes (he showed
a video).

How can this work outside in the real world? Do you
make a Big Ben or Westminster Bridge detector, ie do
you design your robot using prior knowledge of the
world? Clearly it would be nicer to look at the actual
context and see what is startling in that context: a
speaker on an otherwise blank wall; a car in an
otherwise empty carpark; a lake in an expanse of
forest. That means identifying a local “normal”
background, and then “exceptions” to that norm. That
in turn can be handled mathematically, and in theory it
could produce a SLAM map. But it doesn’t wo rk on a
large scale as it doesn’t handle uncertainty (which
leads to drift, error in position). You need to be able to
close the loop, to recognise when you have succeeded
in coming back to where you started from. That
enables you to correct for such errors. If you can
match a sequence of images to another sequence, then

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 8

 8

you start to believe that yes, you’ve been here before,
and the loop is closed.

The robot has to avoid being confused by repetitive
structures (like the arches of New College Cloister, or
similarly parked cars on a street). Newman’s robot can
now do this, driving around the outside of the
Engineering building and correctly discovering when it
has returned to its start point. The same software works
sub-sea as well, with a yellow torpedo-like craft.

SLAM is starting to work; it’s going to take years
more research to add enough introspection to make it
more robust. More semantics are needed to label
places with their names and improve user interfaces.
At the moment it can’t be let loose for f ear of falling
over the roadside kerb, colliding with people, and
insurance (laughter). SLAM is hard, quite well-
understood, and above all central to mobile autonomy.
A system-wide approach is needed.

Professor Peter Johnson (University of Bath) spoke
on Interactive to Autonomous Systems. He is
interested in changing from the old paradigm of
humans-operating-things, through HCI (the current
paradigm): humans-interacting-with-things; to the
emerging paradigm of collaborating with things.
Research issues include interaction, awareness,
collaboration, and trust.

Collaboration means having shared goals (so it’s not
just co-ordination). This always comes with a resource
overhead. Collaboration breakdowns are illuminating.
Johnson has investigated the Qantas 747 flight that
overshot the runway at Bangkok in 1999. It took an
appalling 20 minutes to get everybody off (by a
miracle nobody was seriously hurt). Collaboration
failed in many ways. Knowledge of bad weather was
not shared. The captain was ordered to “go ro und” but
changed his mind. Automatic braking did not work
because the captain reduced power on only 3 of the
engines, missing the 4th, so the system inferred he was
taking off and released the brakes.

Awareness is a poorly-defined concept. We barely
distinguish levels of system awareness; understanding
of goals, intentions, and implications is almost absent
even in research work.

For instance, the artificial horizon display in aircraft
cockpits shows the altitude on the right; to tell if the
plane is climbing or descending the pilot has to do
subtraction sums! A simple down-pointing red arrow
below the altitude display and labelled 1000 could
announce “we are trying to descend at 1000
feet/minute”. But currently avionics designers are not
trying to communicate intentions.

Trust too is important. The 747 crew trusted the
braking system to stop the plane; the captain failed to
trust the “go around” command. Both were misplaced.

Trust is a belief in an attribute of a thing upon which
you have a degree of reliance. (Uncertainly and error
are rightly implied.) Belief can be treated as a
continuous quantity; reliance (the other component of

trust) is boolean — you do or you don’t. Thus there is
a decision whether to trust something or not; so there
is a decision-making process. I, the truster, trust
something or someone, the trustee. My trust is
mediated by something, eg an ID card.

Two problems arise with trust: misuse, ie inappropriate
reliance on something (such as automation); and
disuse, ie inappropriate rejection of something which
is in fact quite trustworthy (such as automation,
perhaps).

Research is looking at how Awareness, Trust, and
Collaboration are connected. Then, ultimately we can
design for collaborativity (a new “ility”).

Clive Pygott (QinetiQ) spoke about the Outline Safety
Case for the Use of Autonomous UAVs in
Unsegregated Airspace. He too is interested in trust
(see Peter Johnson’s talk, above).

For UAVs to operate in civilian airspace, the CAA has
to certify the aircraft type as safe. That means
developing an outline safety case. There are obvious
challenges. Agent software verification (using SOAR
and CSP languages) might help. Currently as already
mentioned the CAA demands a pilot within sight of all
UAVs. The rules of the air say “avo id clouds” even if
eg a radar is being used not visual sensing, as other
aircraft don’t expect planes to pop out of clouds.

A safety case was constructed using GSN, the Goal
Structuring Notation. This essentially just describes an
argument graphically, decomposing goals to show
underlying strategies, concepts, subgoals, assumptions,
and solutions.

The safety case itself essentially argues that the UAV
is equivalent to a manned aircraft, as far as the Air
Traffic Controller (ATC) is concerned. It has to behave
predictably, and what is more it has to obey
instructions from the ATC. What to do if the radio fails
“is obviously something that has to be addressed” said
Pygott.

The UAV also has to appear safe to other air users —
it has to know the rules in the CAA’s CAP 293
standard, even if those rules are a bit vague, with
phrases like “near head -on” — perhaps that means a 3º
cone, for instance. You also have to believe that the
hardware is sufficiently reliable. Current full-authority
avionics run on 4-redundant processors, for example.
Having just 2 processors isn’t enough: what do you do
if they disagree? Either could be wrong.

Thus, some parts of the safety case are much like those
for a manned aircraft; others are unique (can a 3rd party
take control?), and several engineering challenges
remain. Pygott’s team can demonstrate there is no
deadlock and no livelock: but that doesn’t mean they
know the software is correct.

GSN has helped to present the arguments
exceptionally clearly, said Pygott. The approach would
work for any safety-critical software. Progress has

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 9

 9

been made towards using the software agent paradigm
and languages for such systems.

Pygott answered questions from the floor about the
relationship of predictability and safety, and of
transparency and safety: did a UAV have to behave
exactly like a manned aircraft, and if so was achieving
flight certification the same as passing the Turing Test
(laughter). He said he was concerned with these
questions only as far as the CAA insisted upon them.

It was striking how throughout the presentations the
theme of requirements engineering recurred. Goals,
scenarios, required qualities (the “ilities”), evaluation
criteria and even argumentation (using GSN) were at
the heart of the problems facing autonomous systems:
like all SE problems, perhaps. The quality of the talks
and the discussions (both formal and those over
coffee) was excellent: stimulating, reflective,
intelligent, open.

© Ian Alexander 2005

RE-Papers
But Is It Engineering?
Michael Jackson {jacksonma @ acm.org}

Professor Jackson is the Patron of the RESG.
He is well known for his pioneering Jackson
Structured Design and Jackson Structured
Programming (JSD, JSP) methods.

Software developers have long aspired to join the ranks
of recognised engineers. The famous NATO Software
Engineering conferences of 1968 and 1969 were
explicitly motivated by a belief in

“the need for software manufacture to be based
on the types of theoretical foundations and
practical disciplines that are traditional in the
established branches of engineering.”

As members of the BCS RESG we regard our métier
as a part of software engineering, and we call it
requirements engineering.

The reports of the NATO conferences make good
reading, but they reveal a curious blindness. Searching
the report texts for the string ‘engineering’ produces
significant references only to software engineering
itself: there are none to the branches on which the
participants hoped to model their own. The
conferences were motivated by a desire to emulate the
apparent successes of established engineering, but they
didn’t describe or discuss or analyse what established
engineers actually do, or how they benefit from their
theoretical foundations and practical disciplines.

One notable feature of established engineering is a
firm division into specialised branches. A civil
engineer does not design aeroplanes, and an electrical
engineer does not design bridges.

The different branches share underlying principles and
laws because they are all largely concerned with the
physical properties of the world; the mechanics of
structures applies both to the aeroplane wing and to the
piers and roadway of the bridge. But these shared
foundations lie well below the level of the design
activity of a practising engineer, which is always
highly specialised within one particular branch.

The established branches are characterised by their
specialised products, and we should expect branches of

software engineering, and of requirements engineering
with it, to be similarly characterised.

Any colour you like as long as it’s black…
Progress since the 1914 Model T Ford (via the 1936

Mercedes-Benz 260D, and a modern Jaguar)
exemplifies normal design

This specialisation by product is recognisable in the
software itself: an operating system kernel is very
different from a compiler and from a database
management system. Each is developed by specialist
software engineers, and the corresponding products
have improved in quality and reliability over the past
decades. But the main weight of specialisation that
should concern us as requirements engineers lies

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 10

 10

outside the computer, in the problem worlds of
software-intensive systems. A system for
administering undergraduate courses and a system for
managing bank accounts may both rely on the same
DBMS and the same OS, but they are very different in
more important ways. They have different problem
worlds, different interactions with those worlds, and
different requirements.

The importance of specialisation is that it provides the
indispensable context in which lessons learned about
the engineering of systems of one particular kind can
be developed, stored and disseminated among the
specialists, and so made available to improve the
products. This is the foundation of normal design, in
which, according to Walter Vincenti (What Engineers
Know and How They Know It, Johns Hopkins 1993),

“the engineer knows at the outset how the device
in question works, what are its customary
features, and that, if properly designed along such
lines, it has a good likelihood of accomplishing the
desired task.”

 That normal design is a prerequisite of dependable
systems is notably illustrated by the motor car
industry.

Motor cars have been produced since around 1885,
and in the 120 years of their development have
reached a remarkable level of refinement and
reliability. This success is due primarily to the fact that
the design of each successive new model is only a
small perturbation of the previous model’s design.

Where there is no standard design precedent to rely on,
the expectation of success drops dramatically. As
Vincenti says of such radical design,

“the designer has never seen such a device
before and has no presumption of success. The
problem is to design something that will function
well enough to warrant further development.”

If, as requirement engineers, we want to emulate the
established engineering branches, we should pay a lot
of attention to establishing and strengthening
specialisations within our discipline. Without
specialisation we are engaged in radical design, and we
can have no presumption of success.

Another characteristic of the established branches that
deserves emulation is their determined focus on
failure.

Physical structures such as bridges must inevitably fail
sooner or later, because the materials of which their
parts are made are continually attacked by the
elements and inevitably degrade over time. Other
causes of failure are defective parts or a faulty
implementation in which the product is not fabricated
according to the design.

A major concern for the designer is to anticipate
failures and to ensure— so far as possible— that they
will not be catastrophic. Precedent and the canons of
normal design play a large role here. They can

indicate, on the basis of recorded experience, which
failures are most probable and which are most
damaging, and can help the designer to choose the
most effective avoidance or mitigation. There are
many lessons here for requirements engineers that
deserve our attention. Do we routinely consider which
requirements are more critical than others, and take
care to specify a structure in which a failure of the less
critical cannot cause failure of the more critical?

Engineered physical structures like the Golden Gate
Bridge must inevitably fail sooner or later

Emphasis on failure may seem unduly pessimistic for
requirements engineers. After all, software is not
degraded by atmospheric conditions or the passage of
time. Why should we not simply get it right, and avoid
failure altogether?

There is a fundamental reason why failure is inevitable
even in the absence of programming errors. The reason
lies in the informal nature of the physical and human
world, which limits our power to analyse the problem
world of the system. Requirements engineering, from
elicitation to software specification, rests on analytical
models of the problem world.

In some developments, these models may be only
implicit; in some they may be very informally stated;
in some they may be explicit and formal. But they are
always present, even if only as assumptions in the
developers’ minds. However conscientiously they have
been made they will inevitably be imperfect: the
problem world of a realistic system will always be
capable of furnishing hard cases and unexpected
conditions and behaviours that the developers’ models
do not accommodate.

The established branches of engineering deal with this
problem— the imperfection of their analytical
models— by over-engineering critical components. If
the model shows that a 5W resistor will dissipate just
enough heat, then a 10W resistor will dissipate more
heat and will be less likely to fail. If the model shows
that a 6" beam is strong enough to bear the load, then a
9" beam will certainly bear a heavier load.

Building codes mandate such safety factors, but they
are not a panacea. They increase cost, make the

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 11

 11

produce more cumbersome, and may even be self-
frustrating: the 9" beam may make the whole structure
too heavy to support itself safely. They are,
nonetheless, a vital tool in improving dependability of
physical products.

In software engineering generally, and in requirements
engineering in particular, this tool is rarely available. It
is seldom clear how to increase system reliability by
introducing a safety factor, especially where there is
economic pressure to increase automation and reduce

the human role in determining system function. The
lessons of the established branches can not be carried
over in any simple-minded way into the engineering of
software-intensive systems. But we must not ignore
them, as they were— so surprisingly— ignored in the
NATO conferences so long ago.

© Michael Jackson 2005
A review of Walter Vincenti’s book, What Engineers
Know and How They Know It, mentioned in this
article, can be found below in this issue of RQ.

RE-verberations
This section is for items of news that have a bearing on
requirements work. RQ would like to hear of such
things from its readers.

Why IT Projects are Different
The September 2005 issue of the BCS’ IT NOW
magazine reported a debate on whether “IT projects”
(that’s software projects to you or me) are really
different from any other sort of engineering
development. The debate is recorded at
http://www.bcs.org/thoughtleadership/complex . RQ is
interested to note that:

 “Programmes fail for management reasons, not
technical reasons.”

That seems a slightly sweeping statement, and indeed
it is contradicted a short while later in the same article:

“Many suppliers bid low, knowing they can get
back the costs on scope changes and overruns.

Requirements are often lacking – which can give
suppliers another way to make money on top of
their lowest-cost bids.”

In other words, technical and management reasons are
intimately interlocked – in fact so closely related that it
is futile to try to think about them separately (they’re
all requirement concerns).

To complete the retraction of the initial claim, the
article concludes (boldface emphasis added):

 “Clarity of vision of what is to be achieved is
needed at the outset. Such vision also clarifies
what the programme is not going to do, which
is also an important issue.

The business outcomes must be agreed. The
key factor here is money as successful
programmes need a real business reason for
progressing. This means [that] the stakeholders
who are going to benefit financially must be
committed, which requires contracts.”

The central place of requirements in “IT projects” is
thus emphasized no fewer than five times. Perhaps
“m anagement reasons” aren’t the whole story after all.

Safe Social Intercourse
The July 2005 issue of IEEE Computer contained a
Technology News column ‘Instant Messaging: A New
Target for Hackers’ by Neal Leavitt.

The drift of the article is that Instant Messaging or IM
(if you don’t know what that is, ask your children) is
the next fertile seedbed after e-mail for the propagation
of viruses, worms, spyware, phishing, malware and
other poisonous and nasty weeds in the computing
garden.

However, as you might guess from its name, IM is
much quicker than email:

“The most dangerous part about the attacks is
their speed of propagation, caused by IM’s real-
time capabilities… a simulation showed [that] IM
viruses could spread to 500,000 computers in less
than 30 seconds.”

In 30 seconds. Hmm, that makes the ‘rapid’ 24 -hour
turnaround promised by anti-virus software vendors
when they pick up a new virus (ok, I’ll rephrase that)
look rather flat-footed. Obviously this stuff is going to
be highly infectious. And that’s not the worst of it.

“And adolescents, who comprise the fastest-
growing segment of IM users, don’t generally
practice safe computing as much as adults…”

The adolescents, of course, use peer-to-peer transfer of
files (‘mom, I’m just swapping some music trac ks’)
and messages with attachments,

“so they bypass most of e-mail’s server- and
security-gateway-based virus scanning”

as the article cheerfully puts it. So IM viruses are far
more infective, are spread especially by the young, and
are far harder to detect than their conventional e-mail
counterparts. Of course, a built-in IM virus scanner
could find them, so you won’t be surprised to hear that
the Gabby.a worm works

“by sending recipients a hyperlink and tricking
them into clicking on it. Victims then get to a Web
page that uploads spyware, as well as a worm
that opens a backdoor to the machine and
eliminates Windows services such as those used
with antivirus and firewall software.”

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 12

 12

Charming: the worm behaves like an immune-
suppressing retrovirus such as HIV that kills off your
T-cells so it can then infect you at its leisure.

The article suggests some technological fixes: well, it
is an engineering magazine, so what else should it do?
One idea being tested is to queue requests to send to
additional contacts. The idea is that if you have already
communicated with partners a, b, c, and d repeatedly
in the recent past, it was probably safe to do so, but
new partners e, f, g, and h could be risky (honestly,
I’m talking about computer viruses here). So the ‘vi rus
throttling’ mechanism deliberately gets slower and
slower the more partners the virus or worm tries to
have. This should delay law-abiding IM work very
little, but malicious programs should pretty much grind
to a halt.

Other fixes include banning IM altogether (‘Now then
men, stay out of the red-light district during your shore
leave’) or at least having a policy on what it can be
used for; and general virus-checkers that look for
tricks like trying to overflow buffers or sending
executable files as attachments.

Trouble is, no amount of contraceptive, I mean
computing, research or advice is going to do much
about adolescent behaviour. If you’re talking about a
socio-technical system of people and machines, it’s
only as secure as the people will let it be.
Requirements that ignore this awkward fact about
adolescents (and company workers) are known
technically as ‘wishful thinking’.

Yesterday’s Weather
The 22 November 2005 issue of The Cutter Edge
contained an article ‘Yesterday’s Weather’ by Jim
Highsmith. He referred to a 1979 article in the Journal
of the Royal Statistical Society about the use of time
series analysis for weather forecasting. The researchers
(Spyros Makridakis and Michèle Hibon) showed that a
naïve “the weather will be the same as yest erday”
(corrected for the season) prediction did better than
any more elaborate model. I seem to recall that this
caused some mirth on talk radio at the time. But even
then, a weatherman who stood up and confidently
announced a forecast was widely trusted.

Leaving aside the undoubted improvements in
meteorology since then, Highsmith points out that
Extreme Programming advocates planning based on
“yesterday’s weather”, ie the next iteration is based on
the deliverables of the just-completed iteration.

Planning is inherently uncertain, and many (if not
most) attempts to look into the future border on the
magical and superstitious. Highsmith hints that

astrology and Tarot card-reading are roughly as
effective as the finest management techniques today,
with a major ingredient being confidence
masquerading as knowledge.

“High levels of uncertainty have a tendency to
paralyze activity. People want better information
before acting, but in fact, sometimes only acting
will produce the very information they need.”

This effect is beautifully illustrated with a story:

“a group lost in the Pyrenees mountains .. used
an old map they found to find their way to safety,
only to discover that the map was of the Alps.
Action, not the map itself, saved them. However,
the map gave them courage...”

A quite different advantage of superstition is illustrated
with another story (storytelling and scenarios are
evidently powerful things). The Labrador Indians had
a hunting ritual in which a caribou shoulder blade was
scorched in a fire. When the bone cracked, the pattern
of cracks was interpreted as a map of the hunting
grounds.

“Since the cracks were random, it actually
benefited their hunting because they didn’t
overhunt [any] particular area. The superstition ..
was justification for random action.”

Superstition, therefore, can be good for you if it leads
to decisiveness. (An old saying runs: “a good manager
is decisive, and wrong no more than half the time”.)

We may observe that consultants and trainers, too,
have to be clear in their advice, just like management
gurus. While we wouldn’t want to admit to being,
ahem, less than certain in our knowledge, the fact is
that it’s better to give a clear half -true reply that people
can understand and act upon, than a complex muddle
of hedged bets. GCSE questions are invariably hard to
answer if you consider all the exceptions and ifs and
buts. The right approach (if you are consulted by your
children) is to forget all the complexities, and consider
what answer must be expected at that level.

So, the Use Case rule:

Describe the Normal Course (or “Happy Day”
scenario) first.

is a good one. First, tell the simple, clear story, and in
many situations that will be enough. When more is
needed, and when people are ready for it, then go into
the special cases and the A-level answers.

The Cutter Edge is available from
http://www.cutter.com/research/sample.html.

RE-flections

One Counter-Example Is Enough
There is quite a debate going on about the evidence for
why requirements are needed. The Standish ‘Chaos’

Report has come under fire and its owners have so far
kept an eerie silence. What the Standish Corp. and
others have tried to do is to gather statistical evidence
on how many projects fail, and for what reasons. This

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 13

 13

is pretty hard to do, as failing projects may well want
to keep quiet, and companies do not want to give their
competitors ammunition in the struggle to win new
work.

However, the Chaos report did not assert that, for
instance, bad requirements work caused x% of all
projects to fail. Instead, it asked large corporations
how many of their projects failed, and then which
factors it considered important in causing failure.

There are plenty of things you could say about this as
an inquiry method – for instance, suppose that 3 out of
4 corporations just threw the survey form in the bin,
and that of the rest, most of the forms were filled in by
the process improvement department. The 3 out of 4
might have been those who didn’t acknowledge that
requirements were even an issue, and who
consequently had the worst projects: we don’t know,
and nor presumably did Standish.

Process improvement departments might deliberately
colour their responses to show how vital their work
was, and therefore how problem-ridden the
unimproved projects were. Shock! Horror! There are
heaps of problems! Quick, spend money on process
improvement!

Furthermore, a list of factors that someone thinks
might be causes of failure is not the same as an
analysis of what actually went wrong on any given
project, nor as it might seem to be, an analysis of the
relative impact of the different causes of failure of a
set of projects: it’s a generalisation at arm’s length, a
piece of ‘tender-minded’ thinking (see the book review
below).

Quite different statistical evidence could be collected
by experiments on students, but the applicability of
such results is also a moot point.

So, if statistics cannot deliver, is there any way to
gather evidence that bad requirements work is a
problem?

Yes there is.

Remember that all you need to disprove someone’s
claim that X does not exist is one instance of X, or two
or three if you are cautious. You don’t have to do
statistics to try to show that lack of requirements is
always bad; you just have to find one case where it
was a serious problem, and the claim that requirements
work doesn’t matter is disproved. In other words,
showing that

∃ X: problematic(X)

is sufficient, and a great deal easier than showing that

∀ X: problematic(X).

Let’s be concrete about this, then.

• Do I know of an actual project where lack of
requirements work caused disaster?

• Yes.

A scientific analysis-and-modelling package project
was knocked together based on a chat in a pub, as a
‘good idea’ that was ‘obviously useful’ and which
‘could easily be developed by the graduates’. No -one
was given responsibility for the overall specifications,
and the system lacked a coherent architecture and
interface specifications. In fact there were scarcely any
written requirements. Nobody looked at the user
interface either. The new programmers did their best,
and the individual components, some of them doing
very complicated three-dimensional geometry and
interpolation, certainly worked. But the interfaces were
a continuing and very costly nightmare, and when the
product was finally shown to clients, it remained very
buggy.

At least as importantly, it was very difficult to use:
nobody had thought how it would be applied to
problems, or indeed what problems it would actually
be used to solve. The system was ‘inside-out’, making
sense to the designers of its component parts, but
almost no sense to its users. A whole lot of the
complicated work had to be done in the user’s head.
Not surprisingly, it didn’t exactly sell like hot cakes.

Let’s go further.

• Do I know of an actual project where a single bad
requirement was enough to cause serious trouble?

• Yes.

An image processing and distribution service in the
days of slow modems and plain-old-telephone-system
phone lines allowed users to view a catalogue with
thumbnail images, and to place orders for high-
resolution images. This meant that users had to be
allowed to ask to see what they were about to buy
before committing themselves.

The requirement should have said something like

“Users shall be able to view thumbnail images.”

 Unfortunately it said

“…to view images.”

Yes it did. At the acceptance tests, the customer asked
to be shown how to download an image. The head
programmer showed him how to get a thumbnail on
screen in a few moments.

“Yes, that’s fine, but I want to see a full image
please.”

There was some umming and erring.

“Here it is in the requirements specification, ‘view
images’.”

“Yes, but that will take 24 hours or so over the
slow modem link; the phone line will go down
every few hours, so you’ll never be able to transfer
a whole image.”

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 14

 14

“Never mind the ‘yes, buts’, it says I can have it
and I want it.”

Really. So the project went over time and over budget
to do its best to make it possible for the customer to do
something that was never going to work properly
given the available technology.

The developers of the image distribution service got
paid eventually, which is more than happened in
another company which foolishly included the
requirement

“Each search shall be completed within 2.5
seconds”

in their telephone system specifications. At the
acceptance tests, the developers showed off the pre-
arranged searches which all easily passed. Unluckily,

“each search”

could include the surname

“Chang”

which is very common in countries with a large
Chinese population. The customer asked for a
demonstration, which, as he presumably anticipated,
failed by a wide margin.

The search was painstakingly optimised, but the time
never did come down below 3 seconds, and the
customer got a free system. He’d found an existence
proof of a broken requirement, and didn’t need
statistical evidence to see him through a lawsuit: he
had a watertight case, and he knew it.

Could you give similar examples? Yes, I thought so.
Let’s not be shy: we know bad requirements can be
disastrous.

© Ian Alexander 2005

RQ readers are invited to send in their experiences of
requirements disasters they have personally witnessed.

Are Contracts the Root of All Evil, as exemplified by
the cases mentioned here, or is something else going
on? Let us know what you think.

Special Guest Proverb
After all that about existence proofs of very small but
critical requirements problems (with a Chinese
flavour), we need a proverb about…, well, you work it
out for yourself:

It’s not the mountain under your feet:
it’s the stone in your shoe that wears you down.

Attributed to Confucius.

RE-Creations
To contribute to RQ please send contributions to Ian Alexander (ian @ scenarioplus.org .uk).
Submissions must be in electronic form, preferably as plain ASCII text or rtf. Deadline for next issue: 15th March 2006

RE-Publications
Prof. Michael Jackson recommended the following
book (see his paper in this issue).

What Engineers Know
And How They Know It
Walter G. Vincenti, Johns Hopkins, 1990
.

What is engineering knowledge anyway? Is
Engineering just Science’s poor cousin, Progress
wrapped in an oily rag, or is there something
distinctively different about it?

One answer, of course, is that engineering must be
practical. Theories can be fine and elegant, but if the
plane flies and the bridge stands up, the engineer was
right regardless of how the result was arrived at.

But Vincenti goes about his task in a more satisfying
way. In William James’ terms, he is ‘tough -minded’
[1]: he collects evidence instead of creating vague
theories. An aeronautical engineer, he’s taken a careful
retrospective look at five aspects of the growth of
knowledge in aeronautical engineering between 1908
and 1953 - the time when things were uncertain, and
people were feeling their way sometimes almost

entirely in the dark towards safe, reliable, predictable
ways of making aircraft.

This knowledge is not necessarily spectacular, but it is
the kind that matters. How do you rivet a thin metal
skin on to a support without leaving the head of the
rivet sticking out, and without cracking the skin?
Should you counter-sink the hole? Should you hammer
the metal into shape first? Can the rivet itself act as the
shaping tool? Does the metal have to be hot? How do
you make sure the rivet goes in straight, and is
hammered tight enough? There are plenty of wrong
answers, and they are safety-critical. Could scientific
inquiry answer such questions? Possibly, but it would
take an immense amount of time and work. Instead,
engineers try things out, measure, analyse, and inspect,
in a careful but more limited, and in a sense also a
more focussed way.

Vincenti warns that the stories will not be easy going,
and this may be true for historians coming to his
material. But engineers will probably not find the
technicalities at all difficult; the story depends on
them, of course, and the tale is fascinating, gripping as
a good novel.

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 15

 15

Vincenti’s accounts are all the better for being both
true and widely applicable to the questions that arise in
development work such as requirements definition
today. In fact, one of the ‘stories’ is precisely about
‘The Establishment of Design Requirements’. Not
surprisingly, it’s the longest and most complex of the
chapters, but it was almost impossible to put down. It
is rich in details, often astonishing, sometimes funny:

In an exchange of penciled intraoffice
memoranda, Captain Hatcher let down his hair
with a candor that rarely appears in more official
documents:

At present we simply specify that the airplane
shall be perfect in all respects and leave it up
to the contractor to guess what we really want
in terms of degree of stability, controllability,
maneuverability, control forces, etc. He does
the best he can and then starts building new
tails, ailerons, etc. until we say we are
satisfied.

Unsatisfactory airplane characteristics were
doubtless due in part to the inability of designers
to design for what was wanted. As indicated by
Hatcher’s memo, however, what was wanted was
far from clear. (p77)

Couldn’t happen today? Well, what is a ‘fitness f or
purpose’ clause, then?

Vincenti is masterly in showing how engineers
fumbled towards knowledge; few writers have
attempted anything like this. Sometimes, Vincenti
shows, the community was led astray by prejudices
held by special groups of stakeholders (as we'd now
say), especially pilots; sometimes by common sense;
sometimes indeed by the apparent implications of
(correct) mathematical modelling!

Most startlingly, perhaps, it turns out that stable,
reusable requirements are the OUTPUT of years of
effort trying to understand the properties of different
designs in a domain. The requirements epitomise the
laws governing a wide range of possible designs (not
all imaginable aircraft: helicopters for instance
certainly behave quite differently).

What price ‘solution-independent’ user requirements,
then? Today’s aeronautical engineers see it as obvious
that manoeuvrability depends on stick-force-per-g, ie
that an agile fighter plane must respond to a light pull
on the stick. But that wasn’t at all obvious for 25 years
of research and development!

Perhaps there are things we know but can’t explain --
along the lines of Polanyi [2] (in fact, Vincenti does
mention that skilled tasks such as riveting ‘can’t be
learned from the book’ but are in the ‘neuromuscular
skill’ of the practitioners) and important practical
things that were known that are being forgotten.
Reflection on practice, as Donald Schön advocates [3],
is valuable, but easier said than done.

This is a wonderful book, written with an engineer’s
precision, a historian’s eye for detail, and a
storyteller’s clarity. It is impossible to read it without
being struck by one reflection and insight after
another. Learning is difficult, when you’re doing it for
the first time! And of course, every project is a new set
of discoveries. Students and experienced engineers
will find Vincenti invaluable. It is a book to muse
over, to take practical ideas from, and to come back to.

[1] William James, Pragmatism, Lecture 1: The
Present Dilemma in Philosophy, 1907
http://www.authorama.com/pragmatism-2.html

[2] Michael Polanyi, The Tacit Dimension, Doubleday,
1966 (reviewed in RQ25, January 2002)

[3] Donald A. Schön, The Reflective Practitioner,
Basic Books, 1983

© Ian Alexander 2005

Competitive Engineering
A Handbook for Systems Engineering, Requirements
Engineering and Software Engineering Management
Using Planguage

by Tom Gilb

Elsevier Butterworth-Heinemann 2005

Tom Gilb is well known as a speaker and consultant,
as the author of Principles of Software Engineering

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 16

 16

Management (1988) and of Software Metrics (1977),
and as the inventor of “Planguage”, a way of
structuring requirements.

This is an unusual book in several ways, and as such
not easy to review. It might well have been entitled
“The Planguage Reference Manual” as a large part of
its structure is a systematic walk through the main
components of the approach: the language’s Concepts
and its ‘Parameters and Grammar’; and the processes
that use the language. The introduction makes clear
that the book will not be very readable: it is somewhat
expanded from the dry style of a reference manual, but
not by much, and the sharp edges of the hierarchical
structure are everywhere visible. That in itself makes
the book something of a challenge.

Despite the fact that the Planguage glossary section
takes up nearly a third of the book, it’s still only about
a quarter of the current glossary, which is still
growing. There is however a “complete” glossary of
Planguage on the Elsevier website
(http://books.elsevier.com/companions/0750665076/
along with a review by Jerry Huller of Raytheon, and a
sample chapter, both useful if you want to know what
the book is like). The book is thus an incomplete
introduction to the reference material. This is an odd
compromise: perhaps a more ‘chatty’ (to use Gilb’s
own word) overview in the style of a tutorial would
have been a better choice.

The book, however, is far from consisting only of
reference material. Gilb's thinking is based on several
famous names from an earlier age, notably Shewhart
and Deming's Plan-Do-Study-Act, or Plan-Do-Check-
Act if you prefer. (By the way, Gilb draws it as a
rectangle rather than the usual circle with 4 arrows - an
idiosyncratic choice as the symbol for a cycle.) That is
of course a management take on process control:
continuously iterate between measuring and putting a
hand on the tiller to keep the boat on course. Iterative
life-cycles (Gilb calls this Evo, which stands for both
‘evolutionary’ and for ‘evolutionary project
management’) are much in fashion today, from the
CMM’s concept of continuous improvement to the
rapid cycles of Agile software development.

The book, too, is full of simple plain wisdom, often
expressed in aphorisms and proverbs. For instance,
“The basic ideas of S[pecification] Q[uality] C[ontrol]
are simple: A stitch in time saves nine... An ounce of
prevention is worth a pound of cure”. Or: “It is
important to distinguish ‘ends’ from ‘means’”; design
ideas are labelled 'false requirements'. Good sensible
stuff. Similarly the idea of looking for the ‘few key
requirements’ is advised: “I often use the concept ‘Top
Ten’”. The boxed reminder immediately below runs:

Remember, for many projects, even
delivering a single top objective on time and
to financial budget, would be an advance on
their current experiences!

This is the voice of experience (and of an expert
communicator and trainer): it’s obviously true, and it
suggests a good place to start if a project is in a mess.
But it sits oddly with the formal structure of the body
of the book.

Other attractively homespun elements include
Tenniel’s fine cartoon of Alice (in Wonderland)
talking to the Cheshire Cat. Alice says she doesn’t
much care where she gets to; to which the Cat replies
“Then it doesn't matter which way you go”. In the
context of getting projects to create "clear measurable
requirements" (Philip Crosby) this may strike a chord
with some beleaguered readers.

The nub of the problem posed by Competitive
Engineering, however, is whether this sound advice
and practical wisdom means that one has to accept
Planguage lock, stock, and smoking barrel. The author
is clearly aware that it’s a lot to swallow, an d the
reader is urged to look at a little at a time, to take
whatever he needs, and so on. However, essentially the
book presents a solution approach for all the fields
mentioned in the book’s subtitle, complete with its
own private language and notation. This has many
aspects.

For example, “performance requirements” are stated to
include reliability, portability, and usability; the term
“binary” is used to mean “Boolean”; “function
requirement” is used instead of “functional”, “meters”
instead of “accepta nce criteria” and so on. Other
seemingly essential concepts seem to be missing
altogether: you won’t find scenario (or use case),
decision, verification and validation, or even trade-off
here. But perhaps the most striking absence is the
ordinary literature on requirements engineering,
software engineering, or systems engineering. Does it
all count for nothing?

There are certainly some good things in this book, not
least its strong emphasis on iteration, on
communication, on clarity, on reducing risk, and
perhaps especially on measurement (there are telling
quotes from Lord Kelvin and Simon Ramo on that
subject). But these things are the daily stuff of systems
and software engineering: they are the purpose and
bread-and-butter of requirements work, and Planguage
has no monopoly on any of them.

This book is clearly aimed at industry, and it is
associated with a successful consulting and training
practice. It contains much that is helpful and practical.
While the analytic definitions of principles, rules and
concepts may prove too difficult for many readers, the
plain advice (for instance) to define your requirements
in terms of stakeholders, scope, conditions, rationale,
dependencies, links, and testability can hardly be
faulted.

© Ian Alexander 2005

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 17

 17

RE-Sponses
RQ welcomes comments and reactions to articles and
reports published in its pages.

RE-Membering
Peter Drucker, the First Management
Guru

“Management is doing things right;
leadership is doing the right things.”

Peter Drucker died on the 19th November 2005, aged
95. The world has changed greatly since 1909, and
some of the change for the better in management
thinking is certainly down to him.

Drucker was that rare thing, an academic (for half a
century) firmly rooted in practicality: interested in
theory that works. He believed passionately that
managing was about engaging with people (really, you
can see some parallels with RE in all this?). And he is
supremely quotable: a product of the clarity of his
thinking.

“There is nothing so useless as doing efficiently
that which should not be done at all.”

Some nowadays think of Drucker as the father of
targets and management by objectives. But (alas)
Drucker is no exception to one lamentable rule, which
is that devotees generally misunderstand the teachings
of their gurus.

He felt that objectives had to be set by agreement with
all concerned (what we’d call the stakeholders), not by
imposing targets from above. He was wise and
experienced enough to know which of the two
approaches was likely to work, as many in high office
today do not.

“Plans are only good intentions unless they
immediately degenerate into hard work.”

Drucker also believed that management was a practice
to be learnt through experience, not a subject that
could be taught to greenhorns.

“Teaching 23-year-olds in an MBA programme
strikes me as largely a waste of time. They lack
the background of experience. You can teach
them skills - accounting and what have you - but
you can’t teach them management.”

In the case of requirements, there are plenty of useful
skills that can be taught to students, but the systems
engineering aspects are, at the very least, much easier
to teach to engineers who have some experience under
their belts.

Drucker decided not to become a professional
economist because his interest was in people not
numbers. Management is far more than just making a
hopeful GANTT chart in a PM tool, and Drucker
would have had little time for email or telephone
mandarins. He saw management as a combination of
essential functions:

• planning,
• organising,
• motivating,
• measuring, and
• co-ordinating.

Academic fashion is as fickle as any other kind, and
Drucker’s practical, common -sense brand of
management theory is far from current business
training and theory.

For all that, he remains admired and respected both by
fellow academics, and perhaps more importantly, by
practising managers everywhere in the profession that
he more than anyone helped to create. He’s perhaps
less well known by engineers, which is a pity, as he’s a
like mind.

Let’s leave the last word to Drucker himself. It’s just
as applicable to engineering as to management, and of
course the two must go together.

“The best way to predict the future
is to create it.”

Go to it.

© Ian Alexander 2005

Requirements Quarterly RQ38 (December 2005)
The Newsletter of the BCS RESG Page 18

 18

RE-Sources
Books, Papers
See also the RQ archive at the RESG website:
http://www.resg.org.uk
Al Davis' bibliography of requirements papers:
http://www.uccs.edu/~adavis/reqbib.htm
Ian Alexander's archive of requirements book reviews:
http://easyweb.easynet.co.uk/~iany/reviews/reviews.htm
Scenario Plus – free tools and templates:
http://www.scenarioplus.org.uk
CREWS web site:
http://sunsite.informatik.rwth-aachen.de/CREWS/
Requirements Engineering, Student Newsletter:
www.cc.gatech.edu/computing/SW_Eng/resnews.html
IFIP Working Group 2.9 (Software RE):
http://www.cis.gsu.edu/~wrobinso/ifip2_9/
Requirements Engineering Journal (REJ):
http://rej.co.umist.ac.uk/
RE resource centre at UTS (Australia):
http://research.it.uts.edu.au/re/

Volere template:
http://www.volere.co.uk
DACS Gold Practices "Manage Requirements":
http://www.goldpractices.com/practices/mr/index.php

Mailing lists
RE-online (formerly SRE):
http://www-staff.it.uts.edu.au/~didar/RE-online.html
The RE-online mailing list acts as a forum for
requirements engineering researchers and practitioners.
To subscribe to RE-online mailing list, send e-mail to
majordomo@it.uts.edu.au with the following as the first
and only line in the body of the message:
subscribe RE-online <your email address>
LINKAlert:
http://link.springer.de/alert
A free mailing service for the table of contents of the
International Journal on Software Tools for
Technology Transfer.

RE-Actors: the committee of the RESG
Patron:
Prof. Michael Jackson, Independent Consultant,
jacksonma @ acm.org

Chair:
Dr Pete Sawyer, Computing Department,
Lancaster University,
sawyer @ comp.lancs.ac.uk

Vice-Chair:
Dr Kathy Maitland, University of Central England,
Kathleen.Maitland @ uce.ac.uk

Treasurer:
Prof. Neil Maiden, Centre for HCI Design, City
University,
N.A.M.Maiden @ city.ac.uk

Secretary:
David Bush, National Air Traffic Services,
David.Bush @ nats.co.uk

Membership secretary:
Dr Lucia Rapanotti, Computing Department, The Open
University,
l.rapanotti @ open.ac.uk

Publicity officer:
William Heaven, Department of Computing, Imperial
College,
wjh00 @ doc.ic.ac.uk

Newsletter editor:
Ian Alexander, Scenario Plus Ltd.,
ian @ scenarioplus.org .uk
Newsletter reporter:
Ljerka Beus-Dukic, University of Westminster,
L.Beus-Dukic @ westminster.ac.uk
Regional officer:
Steve Armstrong, Computing Department, The Open
University,
S.Armstrong @ open.ac.uk

Student Liaison Officers:
Zachos Konstantinos, City University,
kzachos @ soi.city.ac.uk
Andrew Stone, Lancaster University,
a.stone1 @ lancaster.ac.uk

Immediate Past Chair:
Prof. Bashar Nuseibeh, The Open University,
B.Nuseibeh @ open.ac.uk

Industrial liaison:
Prof Wolfgang Emmerich, University College London,
W.Emmerich @ cs.ucl.ac.uk
Suzanne Robertson, Atlantic Systems Guild Ltd.,
suzanne @ systemsguild.com
Gordon Woods, Independent Consultant,
gordon.woods @ bcs.org.uk
Alistair Mavin, Rolls-Royce,
alistair.mavin @ rolls-royce.com

RQ38 (December 2005)

The Requirements Engineering Specialist Group
of The British Computer Society

Individual Membership Form for 2005

1. Membership Type

Please indicate type of membership:

 BCS/IEE members, please

BCS / IEE member (£10) [] indicate membership number__________________

Non-BCS / IEE member (£20) []

Full-time student (free) [] Studying at:__

If you need a receipt, please tick here []

Corporate Membership also available – details at www.resg.org.uk or ask the Membership Secretary

Payment by cheque only. Please make it payable to “The BCS Requirements Engineering Specialist Group”

__

2. Your Details Title: Mr/Mrs/Ms/Dr/Professor/Other:_______(delete as appropriate)

First Name: Surname:

Address for correspondence:

__Postcode:

Phone: Fax:

E-mail address: Please write your e-mail address clearly using BLOCK CAPITALS

As an RESG member your e-mail address will be added to the RESG mailing list

Optionally, indicate:

Your organisation’s name:

Its type of business/domain:

3. Your Specific Interests

Areas of interest for the RESG given at http://www.resg.org.uk/about_us.html. Is there another area would you like us to add?
__

4. Your Participation Preferences

Please indicate what timings/duration for RESG events would suit you:

Whole day [] Half day [] Evening [] Other (please specify) []_____________

Please indicate whether you would be willing to help the RESG with:

Publicity [] Newsletter contributions [] Organisation of meetings []

5. Your Mail Preferences
The RQ quarterly newsletter is regularly sent to all RESG members. It will be sent as a PDF e-mail attachment unless
you prefer a hard-copy of RQ delivered by post. For hardcopy delivery, please tick here []

I understand that the information supplied on this form will be held in a database and used for the purpose of distributing
information relevant to the activities of the RESG.

6. Your signature: Date:

Please send this form with payment (if applicable) to: Lucia Rapanotti
RESG Membership Secretary membership-RESG@open.ac.uk Fax +44 (0)1908-652140
Computing Dept., The Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K.

www.resg.org.uk

