
Requirenautics Quarterly Issue 34 (December 2004)

The Newsletter of the BCS Requirements Engineering SG Page 1

Requirenautics Quarterly
The Newsletter of the

 Requirements Engineering Specialist Group
 of the British Computer Society

©2004, BCS RESG http://www.resg.org.uk Issue 34 (December 2004)

Contents

RE-Soundings 1
From the Editor 1
Chairman´s Message 2

RE-Treats 2
RE for Medical Informatics 2
The i* Conference: Goal modelling with the
i* approach: 3 days of events 2
An Audience with …….. 3
Tool Vendors Day and AGM 3

RE-Calls 3
RE’05: 13th IEEE International
Requirements Engineering Conference 3
ICSE 2005: 27th International Conference
on Software Engineering 3
IADIS 2005: International Conference
Applied Computing 3
ICEIS 2005: International Conference on
Enterprise Information Systems 3
CITSA’05 and ISAS’05 3
CaiSE’05 3
REFSQ’05: Requirements Engineering:
Foundation for Software Quality Workshop 4
EISTA’05: 4
International Journal on Software
Engineering and Knowledge Engineering 4
Organizations and Society in Information
Systems (OASIS) 2004 Workshop 4

RE-Readings 4
RE for Defence 4
Doctoral Workshop 5
RE Books Event / Birds of a Feather
Meeting 6
Autonomy and quality in distributed
software systems: A dichotomy? Professor
Wolfgang Emmerich’s Inaugural Lecture 6

RE-Papers 7
Customers, Clients and Requirements
Agreement 7

Requirements Engineering is………… 8
What is an Exhaustively Satisfied User
Requirement Anyway? 9

RE-search: Doctoral Workshop Students’ Abstracts 10
Lindsay Smith: Retro-methodology 10
Mark Nicholas Elkins: Requirements from
Marketing? 11
Waraporn Jirapanthong: A Rule-based
Approach for Traceability of Product Family
Systems 11
Amit Thakur: Perception of image by its
sense in Content-Based Image Retrieval 12
Yun Chen: Designing the User-Interface for
Effective Interaction with E-planning Systems
Using a Human-Centred Approach 12
Zhi Li: A Semantics of Problem Frames 13
Paul Arkley: Traceable Software
Development 13
David Nutter: A Self-Organising Awareness
System for Distributed Software Engineering 14
Marco Lormans: Structuring Requirements
Evolution in Embedded Systems Development 14
Paul Adams: A Collaboration Environment to
Support Distributed eXtreme Programming 15

RE-flections 16
Old English Requirements Met 16
Special Guest Proverb 16

RE-Publications 17
Requirements-Led Project Management 17
Book Review: Discovering Real Business
Requirements for Software Project Success 18
Choosing and Using Statistics 19

RE-Sponses 20

RE-Sources 21
Books, Papers 21
Mailing lists 21

RE-Actors: the committee of the RESG 21

RE-Soundings
From the Editor
In this issue, RQ is happy to offer coverage of a
remarkably diverse set of recent events, along with a
rich Christmas mix of articles and book reviews.
We give space to a team of keen-as-mustard, raring-to-
go PhD Students, organized capably by Carina Alves,
our Student Liaison Officer.

We also have the Defence community engaging with
our discipline: they have to cope with the regular staff
turnover required in their environment, so people have
little time in which to pick up enough knowledge to
start running with.
We have a fascinating and original article from Norah
Power on the vexed question of Customers, Clients,

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 2

2

and Requirements Agreement.
We take a look at a selection of new books, including
the Robertsons’ latest book (I think it’s their best) and
a fresh perspective on requirements from Robin
Goldsmith.
And of course now’s the time to be thinking which
events to attend or submit a paper to in 2005. Have a
very Happy Christmas, and a prosperous and fruitful
New Year.

Ian Alexander,
Scenario Plus

Chairman´s Message
Last week I had the pleasure of helping to run a
workshop for PhD students working in RE (see Carina
Alves’ report in this issue). Much of the workshop was
concerned with the mechanics of the research process.
However, ten of the participating students presented
brief overviews of their work. From interest, we
mapped the topics being tackled by the students onto a
set of outstanding issues in RE culled from Nuseibeh
and Easterbrook’s “Requirements Engineering: A
Roadmap” (Proc. ICSE 2000) and Anthony
Finkelstein’s “Unsolved Problems in RE” talk given at
this year’s RESG AGM. There are various ways you
can cut this and of course we only had a snapshot of
current research in RE, so the results have to be
interpreted with a bit of care. However, our snapshot
revealed clusters of work on handling the results of
contextual enquiry and on tracing, some attention
being paid to extending formal models to systems’
environment but nothing on handling NFRs, the
relationship between requirements and architecture or
the reuse of requirements.

This prompts the question, should we be worried?
Does this indicate a disconnect between academic
research and industry need? The first thing to note of
course is that these are all hard problems and it can be
hard to carve out a research agenda for a PhD student,
with all the resource limitations that implies, for such
problems. The second thing to note is that sometimes
the most pressing problems are not necessarily the
most interesting from the point of view of a PhD
student. Finally, of course, our snapshot was a small
one and certainly doesn’t mean that because some
topics aren’t being covered by the group we saw they
are being neglected everywhere. I know of a number
of projects tackling aspects of each topic – and my
overview is by no means all-seeing.

The PhD workshop was just the most recent of the
year’s RESG events. I do hope that you managed to
come to some of them and that you take advantage of
next year’s programme of events and help make them
a success. These kick off on the 26th of January with an
RE for medical informatics event on my home turf at
Lancaster. At present, events are decided by the
committee where we try to anticipate their appeal to
the membership. It would be good to hear directly
from members of ideas for future events – please don’t
be shy in putting forward your views on this or any
aspect of the RESG.

With that, I’ll wish you a happy Christmas and a very
prosperous 2005. On a final note; if you’re an existing
RESG member you’ll be receiving a membership
renewal request with this RQ. An early renewal will
ensure you continue to receive RQ in ‘05 and help us
continue to service the RE community.

Pete Sawyer
Computing Department, Lancaster University

RE-Treats
For further details of all events, see www.resg.org.uk

Forthcoming events organised by the RESG:

RE for Medical Informatics
26th January 2005

To be held in Lancaster.

Medical applications demand high performance and
dependability, as they are often safety-related. How
should their requirements be handled? Speakers
include: Rob Proctor; Oliver Wells; Ashok Gupta.

Registration is required: contact Pete Sawyer
(sawyer@comp.lancs.ac.uk).

The i* Conference: Goal modelling with
the i* approach: 3 days of events
20 April 2005, Tutorial and 4 Talks, City University,
London

21-22 April 2005, Invited Speaker Workshop,
University College London

Concerned about how to model the goals of diverse
actors in your organisation or project?

Unsure how to explore complex goal trade-offs during
your requirements process?

This conference contains events for both practitioners
and researchers. It will introduce, tutor and investigate
the i* approach for modelling and reasoning about the
goals of heterogeneous systems.

i* (pronounced eye-star) is a powerful approach for
modelling and reasoning about the goals of
heterogeneous actors in business and socio-technical
systems, and for choosing systems architectures that
best meet these goals.

The events will be in 2 parts.

- On Wednesday 20th April there will be a half-day
tutorial on i* followed by 4 presentations of the
use of i* on industrial projects.

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 3

3

- On Thursday and Friday 21st and 22nd April there
will an invited speaker workshop to investigate
and extend the i* approach.

For registration, contact Neil Maiden
(N.A.M.Maiden@city.ac.uk).

An Audience with ……..
One of the big names in software engineering.

May 2005. (Date to be announced)

To be held in London.

Contact Bashar Nuseibeh (B.Nuseibeh@open.ac.uk)

Tool Vendors Day and AGM
Wednesday 6th July 2005 (Provisional Date)

Each Vendor will speak on how their tool meets the
following challenge:

You are acting as requirements management
consultant to a client who wants to automate his
existing multi-storey car park with time-stamped
ticket-issuing machines, payment machines, closed-
circuit television cameras to deter both theft and non-
payment, and automatic barriers operated by validated
(paid-up) tickets. The client's systems engineer has
advised that the requirements should be organised into

a list of stakeholders, a set of stakeholder
requirements, a system specification, a project
dictionary, and a list of references, with traces between
these (the dictionary and references both receive traces
from all the other documents; the specification traces
to the requirements, which trace to the list of
stakeholders). The requirements will certainly need to
be prioritised, approved (or rejected), and then have
their status tracked through to final acceptance of the
automated car park.

Show (without spending time restating the problem)
how your tool handles this challenge. Illustrate briefly
the steps you would go through to structure the
requirements, traces, priorities, and status in your tool.

Present slides on each of the following topics:
- setting up the information structure skeleton;
- importing the requirements from Word or text

files;
- setting up the traceability;
- prioritising and approving the requirements;
- tracking the status of the requirements;
- checking the completeness of the traceability;
- any special features of your tool that assist with

these tasks.
Registration: contact David Bush
(David.Bush@nats.co.uk)

RE-Calls
Recent Calls for Papers and Participation

RE’05: 13th IEEE International
Requirements Engineering Conference
August 29th - September 2nd, 2005, Paris, France

http://www.re05.org

Important dates

Paper abstracts (technical, evaluation, reflection
papers): 07 February 2005
Paper submissions (technical, evaluation, reflection,
practice papers): 14 February 2005
Notifications sent to authors: 22 April 2005
Camera-ready papers received: 03 June 2005
Workshop, tutorial, and panel proposal submissions:
11 March 2005
Doctoral symposium submissions: 28 April 2005
Poster and research demonstrations submissions: 28
April 2005

ICSE 2005: 27th International Conference
on Software Engineering
15-21 May 2005, St Louis, Missouri, USA

http://www.icse-conferences.org/2005/

http://www.cs.wustl.edu/icse05/Downloads/ICSE05_C
FP_General.pdf

Other events and calls that might possibly be of
interest to RESG members:

IADIS 2005: International Conference
Applied Computing
22-25 February 2005, Algarve, Portugal

http://www.iadis.org/ac2005

ICEIS 2005: International Conference on
Enterprise Information Systems
24-28 May 2005, Miami, Florida, USA
http://www.iceis.org

CITSA’05 and ISAS’05
11th International Conference on Information Systems
Analysis and Synthesis: ISAS´05 and 2nd International
Conference on Cybernetics and Information
Technologies, Systems and Applications

July 14-17, 2005, Orlando, Florida, USA

http://www.infocybernetics.org/citsa2005

CaiSE’05
13-17 June 2005, Porto, Portugal

http://www.fe.up.pt/caise2005

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 4

4

REFSQ’05: Requirements Engineering:
Foundation for Software Quality
Workshop
will be held in connection with CaiSE’05.

http://www.refsq.org

SERP’05: International Conference on
Software Engineering Research & Practice
June 27-30, 2005, Monte Carlo Resort, Las Vegas,
Nevada, USA

http://www.cs.und.edu/~reza/SERP05.htm

SCI 2005: 9th World Multi-Conference on
Systemics, Cybernetics and Informatics
10-13 July, 2005, Orlando, Florida, USA

http://www.iiisci.org/sci2005

EISTA’05:

3rd International Conference on Education
and Information Systems: Technologies
and Applications
14-17 July 2005, Orlando, Florida, USA

which this year will have “emphasis on the area of
Software Engineering, mainly Requirements
Engineering.”

http://www.confinf.org/eista05

International Journal on Software
Engineering and Knowledge Engineering
Special issue on software traceability

Contacts: Dr. George Spanoudakis
gespan@soi.city.ac.uk, Dr. Andrea Zisman
a.zisman@soi.city.ac.uk

Organizations and Society in Information
Systems (OASIS) 2004 Workshop
http://www.ifipwg82.org/calls/oasis2004call.php3

RE-Readings
Reviews of recent Requirements Engineering events.

RE for Defence
19th October, 1 pm, Defence Procurement Agency,
Abbey Wood, Bristol

Writing Better Requirements – The Good, the Bad
and the Ugly

This was our annual regional event and was made
more interesting by the diversity of the audience,
which consisted of people who had just started writing
requirements, to authoritative practitioners and
lecturers. The presentations were pitched to the lower
end of knowledge pertaining to requirements
engineering, but all attendees that I spoke to came
away with food for thought.

Gordon Woods kicked the event off with a very apt
PowerPoint presentation given the secure military
environment (a bombproof lecture theatre), which
included graphical gun shots complete with realistic
sound effects. It was a miracle that nobody ducked for
cover!

Gordon gave a brief overview of the types of
requirements before launching into defects to avoid
and a list of words that should be banned from
requirements specifications. Too much was said to
describe it all here, but it is well worth looking at his
slides.

Gordon Woods’ slides can be found at
http://www.resg.org.uk/events.html

The second presentation was given by Michael Goom
who discussed the difference between a common view
and a realistic view of defence procurement. Michael
reminded the audience of the importance of the
users/human perspective in the elicitation of system
requirements and it was interesting to see some of
Gordon’s ‘banned’ words in some of the examples
given. The presentation ended with Michael
highlighting the role of internal and international
standards in the documentation of system
requirements.

The final presentation was given by Colin Ingamells
who started his presentation with an overview of
reasons for project failure and the cost committed to
projects at the concept stage. The audience was then
given a verbal ‘walkthrough’ of the V life cycle model
from the perspective of Validation and Verification;
using examples from his person experiences and well
known case studies.

The afternoon ended with a brief panel session. One
discussion revolved around the difference between
systems requirements and software requirements. I
walked away from the event wondering whether the
RESG should run some basic sessions on what is
requirements engineering, as well as our normal
sessions on state of the art requirements engineering
research and practice.

© Kathy Maitland 2004

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 5

5

Another point of view on the Defence event:

The Requirements seminar at the DPA was well
attended and well organised. The presenters were all
excellent, and they covered a great deal of material in a
short time. I am sure that nearly everybody learnt
something useful and came away with some ideas or
knowledge. Those who are just starting out on a DPA
tour of duty or are new to Requirements will have
derived the greatest benefit. More experienced hands,
who have for instance attended the 2 day
Requirements Engineering Symposium at Shrivenham,
are hoping to find answers to deeper and more difficult
questions in follow-up seminars.

This was a very worthwhile event and I look forward
to the next one.

(based on comments from) Rod Chidzey,
Requirements Project Manager, Military Airborne
Communications and Homing Systems (MAC) IPT,
MoD Abbey Wood

Doctoral Workshop
8th December, University College London

See also the students’ abstracts for this workshop,
which are presented in full in the special RE-search
section below.

The workshop was a full day event organised by
RESG as a forum for PhD students doing research in
Requirements Engineering. The idea was to provide an
environment for students to expose their ideas to other
students and a small, carefully-chosen panel of
experienced academic facilitators. Juan Ramil and Pete
Sawyer from the RESG were on hand to provide RE-
specific input. However, we were lucky to have Ita
Richardson (from the Department of Computer
Science at the University of Limerick) and Marian
Petre (from the Computing Department at the Open
University) to provide guidance on more generic issues
relating to doing a PhD and on crucial methodological
issues for RE researchers. Ita and Marian proved to be
very skilful facilitators who have deep insights into
what it is to do a PhD while also being notable experts
in their own areas of software engineering and
computer science.

Following a welcome from Carina Alves who
organised the event and is herself in the final stages of
her PhD, Ita presented practical guidance on how to
write a PhD thesis based on her own experience. She
explained the usual parts that a PhD thesis might have
and discussed the importance of deciding the structure
of your thesis before starting to write it. Ita provided
interesting advice on the importance of knowing your
own writing requirements such as choosing the right
environment, deciding if you prefer long stretches or
short writing times, and most important of all,
avoiding distractions that may divert the focus from
your thesis. In fact, during discussions over the course

of the day, students pointed out that keeping focused is
one of the greatest challenges they face in their PhDs.

Following Ita’s talk (and punctuated by lunch), ten
students (nine from the UK and one from the
Netherlands) squared up to the daunting task of
presenting their research in ten minutes flat. It was
striking that, even though some of the students were
presenting their work for the first time, and even
though presenting anything worthwhile in ten minutes
is very hard, the presentations were of high quality. At
the end of each presentation, there was five minutes
for the audience to ask questions. Questions came from
students and facilitators in about equal measure. While
students’ questions tended to focus on the technical
issues, those of Ita and Marian in particular tended to
probe process, motivation and methodological issues.
This was very effective at surfacing common themes
such as the absolute need to be able to articulate a clear
question that your research addresses.

Following the student presentations, Pete led a
discussion session which he began by flagging the
other stakeholders in the PhD process; supervisors and
examiners. A table was then presented that mapped the
participating students’ research onto open challenges
in RE culled from [Nuseibeh and Easterbrook 2000,
Finkelstein 2004], such as: handling non-functional
requirements, bridging the gap between requirements
and architectures, requirements reuse, etc. The
interesting thing about this was how little
correspondence there was; maybe indicating that other
issues are more interesting or (perhaps more plausibly)
that the big problems aren’t tractable to PhD-scale
projects. Interesting though this might have been, it
proved not to be fit for purpose since the subsequent
discussion focused on more generic PhD issues. In
particular, we talked about success and exception
scenarios and the consequent requirements for and
constraints on a PhD.

Instead of presenting a traditional talk, Marian Petre
conducted an exciting dynamic exercise which she
started by asking everyone to name the biggest
obstacle to progress that they currently faced. A
number of common themes emerged that had a
remarkable correspondence with the stage in their PhD
that the students had reached. For example, finding
resources for evaluation emerged as a common
headache for students close to or already embarked
upon their write-up. Following this, Marian got
everyone to line themselves up against a wall
according to how close they were to finishing their
PhD. After much shuffling about and reorganisation,
while everyone found their right position, each student
was asked to give what they considered to be the most
important single piece of advice to the person standing
next to them on the “less close to finishing” side. This
proved to be an amusing but effective way to share
experience and disseminate wisdom.

Next up was a mock viva where each facilitator played
a role: Marian as supervisor and narrator, Ita as

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 6

6

internal examiner, Pete as external examiner and the
heroic Juan as student. Counting his real viva, this was
the fourth such ordeal that Juan had subjected himself
to! The main goals of this experiment were to get
students to understand that vivas require good – not
perfect – performances and to reveal some of the
“hidden mechanisms” behind vivas. The mock viva
was very amusing as our “actors” delivered a superb
performance. Students agreed that it was a good way
to demystify the fear everyone has about the viva.

To round off the day and tie up the loose ends, Juan
presented some useful tips towards a successful viva
and wrapped up with some final conclusions.

In the end, the event turned out to be a day packed
with activities, wisdom, advice, and sharing of
concerns and everyone left feeling pretty tired. But it
was also a really enjoyable and stimulating event in
which the flow of wisdom was by no means one-way.

[Nuseibeh and Easterbrook 2000] Nuseibeh, B., and
Easterbrook, S. : “Requirements Engineering: A
Roadmap”, Proc. International Conference on
Software Engineering (ICSE-2000), Limerick,
Ireland, 2000

[Finkelstein, A. 2004] Finkelstein, A.: “Unsolved
Problems in Requirements Engineering”, 10th
anniversary address to RESG AGM, 2004

© Carina Alves and Pete Sawyer 2004

RE Books Event /
Birds of a Feather Meeting
12th November at 6p.m.
City University, London

The event went very smoothly (at least, the drinks
appeared to be going down that way after a hard day's
preparation and committee meeting). We had the
enormous and comfortable boardroom at the top of
City University.

All the publishers who attended seemed to be very
happy with the amount of interest they received from a
knowledgeable audience of all ages. There were
bookstalls from Wiley, Pearson’s (Addison-Wesley),
Springer, Artech House, Dorset House (unmanned),
and the BCS itself which is just moving into
publishing. They all deserve our thanks for the energy
they put into this event.

There was a plentiful supply of wine, beer, fruit juice
and soft drinks, accompanied by a wide range of things
to nibble. Conversations ranged from how security
requirements could not be framed in terms of
probability (as human stupidity constituted a common-
mode point of weakness everywhere), through current
and future projects as birds-of-a-feather put their heads
together, to which books people liked and what they
wanted to see in print but couldn't find.

We stumbled out tired but happy into the night.

Autonomy and quality in distributed
software systems: A dichotomy? Professor
Wolfgang Emmerich’s Inaugural Lecture
13th December 2004
University College, London

Wolfgang Emmerich was inaugurated as a Professor
at University College, London, on 13th December 2004.
He is a long-time member of the RESG committee, and
although he is now very busy with his academic duties,
he remains on our Industrial Liaison committee. We
extend him our congratulations. The abstract and
biography for his inaugural lecture are reproduced
below.

Abstract:

Organisations increasingly rely on specialist suppliers
to perform non-core activities. These activities are
often supported by IT systems. This leads to
distributed software architectures that require the
integration of IT services across the boundaries of
otherwise autonomous organisations. These
organisations increasingly depend on their suppliers
and IT services therefore need to be delivered to an
appropriate level of quality. We review whether
autonomy and quality are a dichotomy and show that
they can indeed be reconciled using service level
agreements. We present a novel approach to precisely
define the meaning of formal languages for service
level. We demonstrate how compliance to such
formalised service level agreements can be monitored
automatically. We conclude by showing a number of
application areas that would benefit from the use
automated SLA monitoring.

Biography:

Wolfgang Emmerich is Professor of Distributed
Computing at University College London. He received
his undergraduate degree in Informatics from the
University of Dortmund in 1990 and went on to
conduct research into process-centred software
engineering environments. He received a PhD in
Computer Science from University of Paderborn in
1995. After a brief post-doctoral appointment at the
Software Verification Research Centre of the
University of Queensland in Brisbane, he joined The
City University as a Lecturer in 1996. He was
appointed as a Lecturer at UCL in the Department of
Computer Science in 1997 and co-founded the
Software Systems Engineering Research Group, which
he currently heads.

In parallel to his academic career, he worked for the
Central European OMG representation on the CORBA
middleware specification and co-founded three start-up
companies for which he currently serves as a non-
executive director. He has an active interest in Grid
computing and serves on the UK e-Science
Architecture Taskforce and the OMII Technical
Advisory Board.

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 7

7

RE-Papers

Customers, Clients and Requirements
Agreement
Norah Power, University of Limerick, Ireland

It is generally agreed that there is no such thing as an
ideal requirements engineering process, that it depends
on the situation. In this article I look at different
requirements situations and discuss the different types
of agreement might be reached among the stakeholders
in each type of situation.

One thing that is widely agreed in RE is that
requirements gathering or elicitation begins with the
stakeholders. Stakeholders are people or organisations
that have an interest in the outcome of a development
project and therefore want to have or should have
some say or influence over the system/software
requirements. Stakeholders include the end-users of
the software, and other parties, such as their customers,
who are only involved indirectly. Stakeholders often
include government departments and regulatory
bodies. They always include the developers of the
software, and their managers or employers. In fact,
the term ‘stakeholder’ is often used as an umbrella
term for all of the participants who are concerned,
either directly or indirectly, with the requirements for a
project. Stakeholders are generally defined in relation
to a particular project, that is, they exist as
stakeholders because they have a stake in the outcome
of a particular project.

What is not often realised or made explicit is that
stakeholders have two very different roles in relation
to requirements. These are:

1. As sources of requirements

2. As parties to the agreement that comes out
of the requirements process (requirements
agreement)

Let us take an example to illustrate the difference. A
large hospital wants to acquire a system for its
personnel, payroll and related functions. The hospital
decides to purchase the Human Resource Management
(HRM) module of a well-known ERP (Enterprise
Resource Planning) software package. As a customer
of this ERP vendor, the hospital could well be
regarded as a stakeholder, along with other hospitals
and several other similar organisations. The ERP
software vendor is aware of this and gathers input to
the requirements for the HRM module from these
market sources. Typically, these stakeholders are
represented in the requirements gathering process,
their views are taken into account to some extent, but
they have no involvement in the agreement that comes
out of the requirements process. That agreement is an
internal matter for the vendor company itself. There
are many other sources of requirements besides the
customers, and each customer, however large,

represents only a small portion of the market in a
situation like this. The HRM module has other sources
of requirements that are related to the vendor
company’s business plan, its business partners, its
software architecture, previous and future versions of
this product and its other products.

The HRM package will to need to be adapted to suit
the specific requirements of the hospital. This is
known as configuring or integrating the package. The
hospital will typically decide to contract a software
services or consultancy company to help it with the
configuration project, which typically could take
several months. The hospital’s specific requirements
for payroll deductions and personnel administration
functions, such as staff leave and rostering, will need
to be documented and agreed before the new system
can be implemented. These requirements will have to
be within the constraints imposed by the HRM
package, but as the ERP vendor’s marketing
department will assure you, any reasonable
requirements that the hospital might have within the
scope of HRM can be satisfied, eventually, by the
HRM module.

In this project, the hospital, its management and its
personnel are stakeholders who again are sources of
requirements, but they will have a much greater say in
the specific requirements for the system that they are
going to get than they had in relation to the package
that they bought.

The hospital in this example has two suppliers, the
package vendor and the service company, and two
very different relationships with them. The
relationship with the package vendor is as a customer.
Individual customers in a market have some or very
little influence on the requirements for a software
product that they later on may or may not choose to
buy. As stakeholders, they may have an input to
requirements, but they are not party to the agreed
requirements as determined by the software company.
Their contract with the software vendor does not begin
until the software has been delivered.

The hospital’s relationship with the service company is
as a client. Clients are organisations or people who
commission software or services from a supplier. The
integration services supplier undertakes to establish the
client organisation’s requirements and to fulfil them
within the constraints imposed by the chosen package.

Unfortunately, the terms customer and client are rarely
distinguished clearly in requirements terminology
(there are some exceptions) but are often used
interchangeably in discussions about the requirements
process. For example, the IEEE-830 ‘Guide to the
Software Requirements Specification,’ states that the
most important role of the software requirements
specification is to “ Establish the basis for agreement

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 8

8

between the customers and the suppliers on what the
software product is to do.”

This is a pity, because, as argued above, while the
customers may have an input, they do not always have
a say in the agreed requirements. In the case of the
ERP software vendor, it is likely that the requirements
for a specific release of the product are agreed within
the organisation following a formal process of
consultation and review meetings. This type of
agreement has the significance of endorsement by the
hierarchy of the organisation, represented by the
multiple reviewers of a requirements document. It has
no legal significance, unlike the agreement between
the hospital and the service company that configures
the software.

The requirements document agreed between the
hospital and the service company has the force of a
legal contract, or a formal agreement between two
legal entities. It protects each party from some of the
consequences of lack of satisfaction when the system
is delivered. For example, if it can be shown that the
supplier has fulfilled the requirements specified in the
document, then it does not matter whether the client is
satisfied, the bill has to be paid. If the agreed
requirements are not fulfilled, then the client has a case
for withholding some or all of the agreed payment.

This type of agreement applies in many situations
where software is developed or configured for a
specific user organisation. Each party needs to ensure
that it can control the outcome in some way:

– The client organisation needs to know that it can
‘get what it is paying for’ by having an explicit
contract for the development.

– The supplier organisation needs to know that it
can control its costs by estimating and charging
for the cost of the work and by being in a position
to negotiate increased revenue if the client decides
to expand the scope or radically change the
requirements.

The two types of situations are independent of the type
of software being developed or deployed. Software
product companies often contract out the work to other
companies, and user organisations such as hospitals
may commission their own software. Requirements
engineering takes place in a wide variety of situations,
yet it lacks a theory to explain how different
techniques are appropriate to different situations.

⊆ ∈

This discussion is based on research presented at
REFSQ04 in June. My thanks to the REFSQ
discussants, the reviewers and all the participants at
Riga.

The research is funded by the Science Foundation
Ireland (SFI) Investigator Programme, B4-STEP
(Building a Bi-Directional Bridge Between Software
ThEory and Practice).

Requirements Engineering is…………
by Kathy Maitland
RESG Committee Member, and
Lecturer, University of Western England

Methods, Techniques, & Tools?

At the Bristol event I was asked the question ‘What is
requirements engineering?’ I replied with some trite
answer along the lines, ‘a collection of methods,
techniques and tools that are used to elicit and analyse
the requirements of a system to meet the needs of the
organisation commissioning or operating it.’ In simple
terms, a variation of the Avison and Fitzgerald
definition of a systems development methodology
(Avison and Fitzgerald 1995). This was my definition,
but at the recent BOF event, my colleagues on the
RESG committee suggested that I accosted people and
ask for their thoughts on a definition of requirements
engineering. I had an interesting evening asking people
to complete the following sentence, ‘Requirements
Engineering is…..’ As a band of people from a variety
of industrial and academic backgrounds and away
from the other lecturers who gave a similar response as
I had and students who said it was whatever their Prof
said; I did received some interesting replies.

An Art?

My first reply came from James Robertson, who
immediately said that it is not an ‘engineering’
discipline. This was interesting to me as I had recently
argued that it was an engineering discipline. In my
opinion, requirements engineering is all about a
structured, systematic approach to the elicitation and
analysis of system requirements.

In contrast, James Robertson argued that requirements
elicitation was an art. It was about finding, ‘what is the
problem in the real world’ and what was needed to
solve it. To him, requirements engineering was about
finding the boundary of the solution and tracing
between the two, i.e. the organisational problem and
the boundary of the solution.

Such comments are similar to those of uttered many
times by the RESG patron – Michael Jackson, who
suggests that systems developers rarely solve an
immediately recognisable and well understood
problem and that developers should start by describing
and structuring your problem (Jackson 2001).

Therefore, we could say that requirements engineering
is both an art and an engineering discipline: there is a
need for creative processes in the elicitation of system
requirements, and an engineering approach in the form
of methods and techniques that enable developers to
describe and structure the problem.

A Good Title for a Book

I then accosted our RESG Chairman – Pete Sawyer –
who suggested that Requirements Engineering was a
good title for a book, and I guess he should know; as

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 9

9

he has written one (Sommerville and Sawyer 1997).
Pete was of the opinion that requirements engineering
was the pump primer of the development process of all
systems life cycles and that requirements were hard to
establish. This remark led to discussions on problems
of requirements elicitation, especially when you have a
variety of experts who think that they know what
everyone else knows and how to do it. David Bush’s
interjection was, ‘Requirements Engineering is easier
if you call in a consultant.’ Well, I guess that is one
solution.

A Pragmatic Process?

Another response came from one of the publishers
who said that pragmatic approaches were being
requested in this growth area of computing. He went
on to suggest that ‘if more people understood the
process of requirements engineering the world would
be a better place.’ These two comments provide an
interesting view of requirements engineering and
suggests there is a lack of pragmatic approaches within
the discipline. If you read books pertaining to the
subject of requirements engineering there are few
requirements methodologies, but many individual
techniques and generic methods that could be used in a
requirements engineers toolkit.

Assuring a Benefit?

From group discussions there was a general consensus
that requirements engineering is about capturing ‘what
an organisation wants and what they do not want’ and
it required information about the organisation and the
processes that it performed. It was to address these
general points that Jeremy Dick suggested that
requirements engineering is the negotiation, definition
and the assurance of benefit. If there is no benefit in
making proposed changes to a current system, why
change it.

For Life, not just for Christmas

There are no definitive answer to the statement
‘Requirements Engineering is……’, but as Jeremy
Dick jokingly commented, ‘Requirements are for life
and not just for Christmas’ and of course he is right;
requirements are for life of the system, they might be
changed, evolved or even dismissed but must still be
traceable and they will all will have impacted upon the
development and evolution of a system.

References

Avison, D. E. and G. Fitzgerald (1995). Information
Systems Development Methodologies, Tools and
Techniques, McGraw-Hill.

Jackson, M. (2001). Problem Frames: Analyzing and
structuring software development problems. London,
Addison-Wesley.

Sommerville, I. and P. Sawyer (1997). Requirements
Engineering: A Good Practice Guide. Chichester, John
Wiley & Sons.

What is an Exhaustively Satisfied User
Requirement Anyway?
In classical RE theory, the system specification (let’s
call it the SRD, and an individual system requirement
an SR) is said to “satisfy” the so-called “User”
Requirements (URD, and UR). Stakeholder or
Business Requirements (neither are exact synonyms of
UR, by the way) might be better, but that’s another
story. It satisfies it exhaustively, if we’re to believe the
theory: every atomic UR is accounted for in all its
meaning. No SR that is not shown to be mandated by
the UR is supposed to exist. Either a “satisfies” trace
must be added to show which UR(s) the untraced SR
exists to satisfy, or else the SR must be deleted. Or so
the theory says.

Intentionally sexual language? Drawing by William
Stukeley (1687-1765), showing the greek goddess Artemis
seated on the sphere of the stars, and holding a painting of

Isaac Newton, adorned like a greek hero

Now this is a strong claim. Leaving aside the
engagingly sexual language – reminiscent of Isaac
Newton’s (intentional) choice of technical terms such
as “the attraction of heavenly bodies” [Newton 1687],
to much learned sniggering over the claret – the claim
is that an SR is valid if and only if it is called out by a
UR, and that a URD is satisfied only when all the URs
are exhaustively satisfied by suitable SRs:

URD Ö SRD.

Really? It may be a neat and tidy theory, but what
about the law, international standards, and the like?
Does the URD have to contain all of those? Surely not:
the poor old stakeholders just need to say what they
want, and leave it to the systems people to say which
parts of the law are applicable in their case. That’s
where the knowledge probably is, and there is a
sensible division of labour. Standards can be thought
of as reusable requirements, and in mature domains
they cover many of the required qualities of a system
(whereas the functionality is presumably unique, and
less easy to recycle).

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 10

10

Secondly, a whole lot of system needs come from the
process of analysis, and indeed from trading-off design
options. But do such requirements have to be justified
post hoc by pretending that they came from the URD?

Suppose that the metallurgy guy comes up with some
constraints on how the metal components are to be
worked. Do we have do go away and invent a
matching UR

“All metal parts shall be bashed appropriately”?

There’s something wrong here! Users can’t be
expected to know about such things, and even the
existence of metal within the chosen solution may not
have been known in advance: the level is wrong. This
is a system issue, and apart from a completely general
requirement for safety and reliability, the users should
not concern themselves with it. The truth, surely, is
that the specialist disciplines relevant to the system
solution are stakeholders in their own right, though in
no sense “users”.

If so, we should either abandon the UR/SR distinction,
or the idea that there should be complete traceability
between the two. A “user” statement of need –
Business Requirement, Problem Statement, whatever –
is clearly valuable and in a sense natural. We do want
to describe the problem before specifying a solution.
And we should check that we haven’t forgotten to

account for any of the individual URs in the
specification.

So, the thing that has to give is any feeling or hope that
a URD can be comprehensive. It describes what some
of the stakeholders want – hopefully, a properly
representative set of people. They can only speak from
their own backgrounds and experience. But is it The
Requirements? No. There’ll be plenty of others. The
SRD does have to satisfy the URD – where it’s
appropriate, affordable, and well-founded. After that,
the SRD is on its own.

As for the individual SR-UR relationship, it may
happen that an SR on its own sometimes satisfies a UR
completely. But if the URD is genuinely at a higher
level of abstraction than the SRD, it’s likely that
several SRs will be needed per UR: each of them
“contributes to satisfying” the UR. That must be the
general case – even if it doesn’t sound quite so snappy.

References
Isaac Newton, 1687. Philosophiæ Naturalis Principia
Mathematica (The Mathematical Principles of Natural
Philosophy). Imprimatur S. Pepys, Reg. Soc. Praeses
Julii 5. 1686. Londini Jussu Societatis Regiae ac Typis
Josephi Streater. Prostat apud plures Bibliopolas. Anno
MDCLXDXXVII.

© Ian Alexander 2004

RE-search: Doctoral Workshop Students’ Abstracts
The Doctoral Workshop (for PhD Students), held on
the 8th December 2004 at University College London
(see the Report in RE-Readings above), is an
opportunity for research students starting out on the
road to a Doctorate to develop confidence in talking
about their work. Writing a brief abstract that people
working in other areas can understand is an essential
part of this. Here is how the students describe their
proposed theses.

Lindsay Smith: Retro-methodology
Supervisor: Dr. Tracy Hall

The solution of a technical problem: Placing a
computerised artefact in any given operational
environment potentially changes that environment in
unpredictable ways. Once implemented any underlying
change caused has the potential to invalidate any
developmental decision taken prior to that
implementation. The computerised artefact is ‘in situ’.
The developer can attempt to anticipate change but
application of developmental techniques
retrospectively is problematic.

Prior research has incorporated work originating in
the social sciences to improve the context in which the
requirements of stakeholders are processed. This work
has gone some way towards a solution of the problem
outlined above. A consensus exists that a developer’s
interpretation of an existing environment should

include stakeholder views. Less agreement exists as to
how this reduces the risk of undesirable events
happening after implementation, e.g. the ‘system’ is
inadequate for stakeholder requirements.

Formalising (to make machine-executable) an informal
(e.g. human-activity) system remains problematic. You
cannot rule out unpredictable change even if the
scenario includes correctly identified stakeholders
making perfect sense of a developer’s interpretation.
Some people would indeed consider this ‘best case’
scenario highly unlikely in the first place. Certainly,
the issue of how to include stakeholder views in
requirements engineering continues to be open to
argument. Interestingly the argument as to why include
such views appears much less open.

The research hypothesis: That further work is
possible on ‘social issues’ in requirements which can
improve representation of stakeholder context in
computerised solutions. A more socially sophisticated
representation, of stakeholder requirements, could be
used to ‘off set’ any negative effects of stakeholder
environment change due to computerised
implementation.

Sketch of proposed solution: Evaluate social science
techniques that have previously been ‘adopted’ into
the requirements engineering process. Identify
‘workable’ aspects of this type of technique for the
requirements process. Investigate incorporating such

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 11

11

techniques into the requirements engineering process,
using existing models/methods if possible. Apply
‘post-operational’ requirement ‘smoothing’ using the
‘social issues’ identified during the ‘pre-operational’
part of the requirements process.

The expected contribution: The nature of this
problem area is essentially ‘paradoxical’ and unlikely
to be entirely resolved. The introduction of new
technology has the potential to alter stakeholder
environment/view unpredictably by default. That said
addressing ‘social issues’ with such an approach
should, on balance of probabilities, give further insight
into stakeholders role in the requirements process.

Evaluation of results: It would be desirable to ‘prove’
this with a computerised solution in an operational
environment. Scalability is a likely problem factor
with this type of evaluation. A direct comparison, if
possible, with a more traditionally developed solution
could ‘prove’ increased compatibility with stakeholder
views within the operational environment. Other
methods of evaluation may be necessary for interim
results etc.

Mark Nicholas Elkins: Requirements from
Marketing?
Supervisors: Professor Margaret Ross, Geoff Staples,
and Ian Tromans all of Southampton Institute

Abstract: Technical problem to be solved: Marketing
is concerned with the identification and satisfaction of
customer needs. Therefore can the methods that it
offers be of significant use for [large UK*]
organizations in the identification of initial needs for
software for internal use? Identification of initial need
is the foundation on which all software projects are
based and hence the importance this has on the quality
of software produced. An extensive literature review
has revealed that there appears to be no previous
research on this specific problem.

Research hypothesis: Marketing methods are of
significant use for [large UK*] organizations in the
identification of initial needs for software for internal
use?

Sketch of the proposed solution: This positivistic
study intends to use survey questionnaires and
interviews to gather quantitative and qualitative data
from a sampling frame of [large UK*] organizations [,
which have over 1000 employees*]. [The population
sample being chosen by taking a quota of one, by
computer programme generated random selection,
from each county within the UK where such an
organization exists.*] Sample size will be decided by
considering what is achievable within a research
project being undertaken by a PhD research student
over 3 years within given resource and time
constraints. Collected data and variables will be
analysed using statistical methods in an attempt to
disprove the hypothesis. There will be an ongoing
search and review of secondary data to provide

information on and keep up to date with external
research within the problem boundaries.

Expected contributions of this research: To add
knowledge that improves the quality of software used
and produced through the better identification by
[large UK*] organizations of initial needs for software
for internal use.

Explanation of planned evaluation of results:
Respondent validation, Negative case analysis,
Reflexivity and Replication. Such methods to be used
to attempt to check the Reliability, Validity, and
Generalisability of the research.

* Provisional Research Boundaries

Waraporn Jirapanthong: A Rule-based
Approach for Traceability of Product
Family Systems
Supervisor: Andrea Zisman

Requirements Traceability (RT) has been recognized
as an important activity in software system
development. Traceability relations can improve the
quality of the product being developed, and reduce the
time and cost associated with the development. In
particular, traceability relations can support evolution
of software systems, reuse of parts of the system by
comparing components of the new and existing
systems, validation that a system meets its
requirements, understanding the rationale for certain
design and implementation decisions in the system,
and analysis of the implications of changes in the
system.

However, automatic generation and maintenance of
traceability relations is not an easy task. Very few
approaches have been proposed in order to support
automatic generation of traceability relations. The
majority of the approaches assume that traceability
relations should be established manually, which is
error-prone, difficult, time consuming, expensive,
complex, and limited on expressiveness. Therefore,
traceability is rarely established.

In this work, we propose a rule-based approach to
allow automatic generation of traceability relations
between documents created during the development of
product family systems. These traceability relations
can be used to facilitate identification of common and
variable functionality in the product members of the
family, and to support reuse of core assets that are
available under the product family architecture.

We are interested in creating traceability relations for
documents generated in feature-based methodologies.
We also believe that object-oriented methodology is
important to support product family development and
we concentrate our work in an extension of the FORM
methodology that combines object-oriented documents
and documents proposed in the FORM methodology.

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 12

12

Our work focuses on eight different types of
documents and assumes the documents represented in
XML, in order to allow interchange of documents
produced by different tools. We have identified nine
different types of traceability relations between these
documents. We propose to use XQuery to represent the
traceability rules. Currently we are developing a
prototype tool for enabling automatic generation of
traceability relations for product family systems. We
plan to evaluate our approach in real case studies in
terms of recall and precision of the traceability rules.

Amit Thakur: Perception of image by its
sense in Content-Based Image Retrieval
Supervisors: Dr. Lynee Dunkley and Dr. Amer
Salman Thames Valley University

Problem To Be Solved: As we know that until now
there is no proper standards for developing image
description. This research for solving the problem of
image description in content-based retrieval. The
content in this system is how to recognize the image
according to user’s sense and retrieve the image by
that sense from the database.

In this research, we need to develop a concrete set of
metadata that facilitates content based image search by
its sense. We also need to develop a system that
recognizes the image automatically and store it under
its proper datatype in the database. The datatypes
should be categorises according to image senses. Sense
classification for images are common sense,
emotionality and sense of humour. There should be a
hierarchical approach maintained between these senses
i.e. hyponymy (the semantic relation of being
subordinate or belonging to a lower rank or class).

Develop a computer vision system, which is capable of
image description and can recognise the complex
scenes rapidly like a human visual sense does.

This research could benefit:

– The heritage sector, including art galleries,
museums and libraries

– Newspapers and other media organizations
maintaining image archives

– Multimedia developers who need to re-use content
– Engineering firms with extensive ranges of spare

parts
– Software developers in the image or multimedia

database area
– Medical applications.
– Academic research groups.
– Home entertainment
– Web searching.

Yun Chen: Designing the User-Interface for
Effective Interaction with E-planning
Systems Using a Human-Centred Approach
Supervisor: Andy Hamilton

With the development of Information Technology,
more and more digital systems are applied in urban
planning process, which refers to e-planning systems.

Although the usability of products developed for e-
planning use has improved immensely in recent years,
they still require users to have or acquire considerable
technical knowledge to operate them. The major
obstacle to non-expert users is navigating an interface
that embeds a language, world view and concepts that
support the system’s architecture rather than the user’s
work view.

Human Computer Interaction (HCI) received attention
in the first part of the 1990s to solve this kind of
problem; however it seems that within urban planning
research, little attention has been paid to the influence
of HCI on research and practice.

Furthermore, the type of current users that are being
exposed are very different from those who have been
at the centre of the earlier research on HCI issues, who
are specialists using the system to accomplish a
specific work-related task. With the varying level of
computer skills and literacy, the general public may
use the e-planning system in one of a large number of
application areas.

Accommodating such a wide spectrum of needs is a
challenge and the interface is generally the key. A
Human Centred Approach (HCA) opens new avenues
for understanding users’ expectations from an e-
planning system, the ways in which they use,
understand and value the system, and the role of e-
planning systems within the wider societal context, so
that it can provide valuable information in the
designing of effective user interface architectures.

As a result, HCA is supposed to be a proper way to
make a complex computer technology accessible to a
wide range of users, who are bringing a diversity of
knowledge, technical capabilities and cultural
perspectives.

In addition, finding an appropriate balance of
theoretical rigour and practical applicability in HCA is
also worth to be addressed, which will benefit future
researchers in related field, as well as contribute to the
reality of the Inclusive Knowledge Sociality in 2010.

The whole research will follow the ‘activity line’ as
‘Investigate – Generate –Develop – Test – Evaluate’.
After the literature investigation, a conceptual model
will be generated based on HCA, which involves two
ideas, i.e. ‘User as Nucleus’ and ‘User as Refiners’.

This model will provide a sound base for developing a
prototype interface in a project called ‘IntelCities’.

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 13

13

During the process of IntelCities project, the prototype
will be tested repeatedly and redeveloped.

And finally, evaluation methods will be adopted to
evaluate four aspects of the research, i.e.

– using Cognitive Dimension Framework (CDF) to
evaluate HCA theory applied in urban area
(theoretical evaluation),

– using HCI usability evaluation to evaluate the
final prototype developed (prototype evaluation),

– using comparative methodology to evaluate
whether or not HCA could increase the
interactivity with e-planning systems (hypothesis
evaluation) and

– using triangulation methodology to evaluate
whether or not research methodologies adopted is
correctly used (methodology evaluation).

Zhi Li: A Semantics of Problem Frames
Supervisors: Dr Jon G. Hall, Dr. Lucia Rapanotti, Prof.
Darrell Ince, The Open University

Problem Frames [3] provide a useful way for people
to understand and solve software problems. They
contain a concrete set of syntaxes – graphical notations
(e.g., labelled boxes representing domains, annotated
arcs representing shared phenomena, dotted ovals with
dotted arcs representing requirements) for
communication and informal reasoning in RE practice.

It is a widely recognised problem in software
development that a graphical notation (syntax) without
an unambiguous semantics can cause difficulties in
communication [5] – a typical example is UML [1].

Although graphical notations aid communication, they
do not necessarily facilitate formal or rigorous
reasoning. A formal semantics can help with rigorous
reasoning and avoid ambiguities. Not enough research
has been focused on rigorous reasoning from domain
modelling [4] to software solutions, especially in the
context of problem frames.

Hall et al [2] have established a semantic framework
for Problem Frames – a set-based logical
characterisation of solutions that map to a problem
diagram, which should work in all cases in RE because
it is a textual language framework that can reason
about both formal and informal descriptions.

However, it has not given constructive methods to find
the solutions. We have begun investigating a restricted
form of CSP that can provide this constructive method.

I expect that my PhD will facilitate RE practitioners in
representing problem diagrams, defining equivalent
problems, allowing problem transformations, and
underpinning correctness arguments for frame
concerns. The results will be evaluated by a series of
case studies.

References

[1] A. Evans, J.-M. Bruel, R. France, K. Lano and B.
Rumpe, Making UML precise, Proc. OOPSLA’98
Workshop on Formalizing UML. Why? How?, 1998.

[2] J. Hall, L. Rapanotti and M. Jackson, Problem
Frame Semantics for Software Development, Journal
of Software and Systems Modelling 2004 (to appear).

[3] M. Jackson, Problem Frames: Analyzing and
Structuring Software Development Problems,
Addison-Wesley, 2001.

[4] M. Jackson and P. Zave, Domain Descriptions,
Proc. IEEE International Symposium on Requirements
Engineering, IEEE CS Press, 1993, pp. 56-64.

[5] M. Petre, Why looking isn't always seeing:
readership skills and graphical programming?,
Communications of the ACM, 38 June 1995, pp. 33-44.

Paul Arkley: Traceable Software
Development
Supervisor: Dr S Riddle, Newcastle University

The Technical Problem: Modification of complex
computer based systems requires a detailed
understanding of their functionality. To gain this
understanding it is necessary to traverse the
development artefacts looking for common threads of
development reasoning.

Requirements Traceability is a technique which helps
the engineer to find these threads. Previous
requirements traceability research has concentrated on
structuring information, rather than considering how
traceability relates to the main development process.

In practice, traceability is performed as a separate
quality-proving process by a different set of engineers
from those who developed the product.

Thesis Hypothesis: We argue that the lack of direct
benefits to main development process from traceability
is the cause of the above problem, leading to
information that is incomplete, inaccurate and out of
date. Integrating traceability into the development
process will significantly improve the quality of the
information. To succeed, this integration must provide
immediate, tangible benefits for the main development
process.

Proposed Solution: We propose an inter-phase
Traceable Development Contract in order to provide
these benefits.

The TDC defines the actions to be taken by related
development phases, such as requirements definition
and software design, in response to changes to their
common information artefacts.

The TDC will consist of three parts:

– the common information artefacts;

– traceability information structures which record

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 14

14

how the common information artefacts are related
to the development phases; and

– a behaviour protocol.

The protocol will define the behaviour of each
development phase depending on changes in the
common information artefacts and traceability
information structures. The TDC is beneficial to the
development process as it, improves the quality of
traceability information, coordinates inter-phase
development and provides a means of assessing and
negotiating development changes.

Contributions of PhD: This thesis builds upon
previous work by establishing a means for the
integration of traceability techniques into the main
development process. This integration and the
formalisation of the relationship between development
phases will result in an increased level of traceability
information correctness. This will, in turn, result in
greater product understanding and reduced upgrade
costs.

Evaluation of Results: The thesis hypothesis will be
tested by:

- Determining the empirical evidence from
traceability practices that supports or denies the
hypothesis.

- Determining a theory from the empirical evidence
that describes the factors involved in the recording
of traceability relationships.

- Conducting experiments where student teams
apply either an integrated or separate traceability
recording process to a simple development case
study. Comparison of the results from these
groups will show whether that an integrated
method produces a richer set of recorded
relationships.

- Implementing the TDC in an industrial setting and
recording the observation of the engineers taking
part in the development process.

David Nutter: A Self-Organising Awareness
System for Distributed Software
Engineering
Supervisor: Cornelia Boldyreff, University Of Lincoln

Software engineers and other collaborative disciplines
rely on informal “out-of-band” communication for
effective coordination of their activities, especially in
agile methods. This type of communication is lost
when development is distributed, with consequent
deleterious effects on engineering effectiveness. In
order to effectively support distributed software
engineering, a replacement for this informal
communication must be found.

Much previous research focussed on either
synchronous awareness such as radar views and shared
editors, where participants were distributed in space

not time, or asynchronous awareness such as change
notification, which did not explicitly support
concurrent activities. A unified approach is necessary
to support software engineering.

Furthermore, requiring co-location of engineering
teams is not possible in today’s marketplace where
development is often outsourced, consequently a
definite requirement for awareness tools to replace
informal communication exists. To implement an
awareness tool capable of providing awareness of
activities distributed both in time (asynchronous
awareness) and space (synchronous awareness). The
tool will not rely on a centralised reflector; instead
information will be distributed over a peer-to-peer
network arranged using a self-organisation algorithm.

Consequently awareness information need not travel
more than a few hops from its originating peer,
reducing network load and increasing relevance of
information received. Unlike reflector-based CSCW
systems, the network will scale and will not have a
single point of failure in the reflector. Furthermore,
without the need to setup a reflector, there is the
capability for ad-hoc awareness, using low-complexity
peer discovery by local broadcast for example.

The tool will be integrated with the Eclipse
development environment. The files a user is currently
editing will determine the data they are interested in
and fuzzy similarity metrics will be used to compare
the collections of each peer in the network in order to
drive the self-organisation process.

To evaluate the success of self-organisation, a
simulation approach will be used before deploying the
algorithms in the wild. To evaluate the effectiveness of
the awareness provision, initial deployment and
controlled experiments will be conducted within the
Distributed Software Engineering group at the
University of Lincoln and a later version of the tool
will be trialled with existing Eclipse users.

Marco Lormans: Structuring
Requirements Evolution in Embedded
Systems Development
Supervisor: Arie van Deursen, Delft University of
Technology

Current requirement engineering tools support the
evolution of requirements insufficiently for embedded
systems development practice.

The multidisciplinary environment (ranging from
mechatronics to human machine interfacing) and the
ongoing evolution of these systems cause
inconsistencies in the set of requirements, which in
turn lead to error-prone, time consuming, and costly
repairs.

An explicit requirements management environment
incorporating both structured and semi-structured data,
supported by tools, and tailored towards the embedded
systems domain, is needed to improve requirements

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 15

15

evolution with respect to

1) the interaction with stakeholders,
2) the presentation of the requirements and

3) the processing of changes in the set of
requirements.

A Requirements Engineering System (RES) is a
conceptual framework that provides a structured
requirements management environment, which
explicitly defines the process of evolution by
identifying all three important aspects of requirements
evolution.

Our RES captures the needs of the embedded systems
domain, characterized by its multidisciplinary nature,
product families, and product evolution. It provides a
metastructure (RE meta-model) incorporating both
structured and unstructured requirements data which
supports reuse of requirements for different product
families as well as processing changes to the set of
requirements consistently.

Furthermore it provides flexible interaction between
the various stakeholders involved in developing
embedded systems making it easier to tailor it for a
specific industrial situation. Finally, it provides a set of
guidelines to set up a RES in practice using state-of-
the-art RE technologies, improving the adoption of
these technologies in practice [1].

The RES framework will be applied in a number of
industrial and academic case studies. In each case
study, selected aspects of the framework are
investigated, resulting in improvements for the meta-
structure and prerequisites for successful tool
application. In [2] we investigated the complete
process of requirements evolution in an outsourcing
context. Other case studies include the generation of
forms and views from a semi-structured set of
requirements and the recovery of traceability links
from an unstructured set of requirements – the latter in
the form of a structured view.

References

[1] Bas Graaf, Marco Lormans, and Hans Toetenel.
Embedded software engineering: state of the practice.
IEEE Software, 20(6):61–69, November–December
2003.

[2] Marco Lormans, Hylke van Dijk, Arie van
Deursen, Eric Nöcker, and Aart de Zeeuw. Managing
evolving requirements in an outsoucring context: An
industrial experience report. In Proceedings
International Workshop on Principles of Software
Evolution, Kyoto, Japan, 2004. IWPSE04.

Paul Adams: A Collaboration Environment
to Support Distributed eXtreme Programming
Supervisor: Professor Cornelia Boldyreff, University
of Lincoln

The Problems Posed by eXtreme Programming:
The combination of a lightweight process and
important interactions in XP creates a strong
implication for the requirement of collocated
collaborators. This is not always practical, in particular
the end-user may not be located near the software
engineering team. Previous attempts to distribute XP
have failed to adequately solve the problem in one of
two ways.

– Some systems, such as MILOS [1] have failed
because they are based as an ad. hoc. integration
of existing tools rather than a system specifically
designed for the purpose.

– Other systems, such as Joto and Rito-Silva's
“adaptive workflow” [2] have failed because they
do not support all the crucial features of XP, such
as pair programming.

Hypothesis: The key principle of this research is that
it is both desirable and possible to create a system to
support the distribution of XP so that there is no
degradation of productivity.

Proposed Solution: The proposed solution for this
problem shall be based on development of support for
the key interactions within distributed XP: daily
meetings involving the customer, pair programming
and continuous integration. The solution must also
support the communication and awareness overheads
created by distributing XP. The entire support
environment for distributed XP shall be developed as a
plug-in for the Eclipse IDE.

Evaluation: The goal of this research is to develop a
system that allows the distribution of XP without a
degradation of productivity. Within XP the best metric
for productivity would be project “velocity'” (the rate
of conversion from desired features to delivered
features). The two key areas of success for a system of
this nature are communication and awareness, both of
which are quantifiable and whose contribution to
project velocity can be assessed.

References

[1] F. Maurer and B. Dellen and F. Bendeck and S.
Goldmann and H. Holz and B. Kötting and M. Schaaf.
Merging project planning and web-enabled dynamic
workflow technologies. In IEEE Internet Computing,
May 2004

[2] Ricardo Jota and António Rito-Silva. Supporting
Distributed Extreme Programming with Adaptive
Workflow. In Automated Software Engineering:
Proceedings of the Workshop on Cooperative Support
for Distributed Software Engineering Processes,
September 2004

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 16

16

RE-flections
Old English Requirements Met

… on him byrne sc•n,
séaronet séowed smíÞes orÞáncum

‘… on him a mail-coat shone,
armour woven by a smith’s skill…’

Beowulf, lines 405-6

When on holiday it is pleasant and sometimes helpful
to read and reflect a little. I enjoyed some Old English

in the form of an
account of a hero’s
deeds by an unknown,
but wonderful, poet. In
those days – the poet
was writing in about
AD850 of wilder times a
few centuries earlier –
basic requirements for
survival included swords
and armour. A Byrnie or
coat of mail may seem
an unremarkable piece

of equipment today – its modern equivalents are
perhaps flak jackets and body armour. But in a time
when people had few possessions and little in the way
of technology, a shirt that could save your life in a
fight must have been a prized object indeed.
English has changed quite a bit in twelve centuries, but
most of the words in the lines quoted above should
need little explanation. By the way, the ‘y’ in ‘ byrne’
is pronounced ‘ü’, and the ‘sc’ in ‘ scan’ is pronounced
‘sh’ as in its modern equivalent, ‘shone’.
‘searo’ may be recognised by Tolkien readers as the
root word in ‘Saruman’, the cunning man or wizard.
‘searo’ seems always to be used in the context of
knowledgeable use of technology – not necessarily
magical, but certainly clever and possibly dangerous.
Describing a piece of armour as a ‘searo-net’ says that
it is a crafted mesh, valued for its properties. As the
poet writes, it is

‘héard hóndlocen, hélpe gefrémede’
‘hard, hand-linked [mail-shirt] –– help afforded’.

 Beowulf, line 551

We may notice that hardness (a required quality),
hand-linking (a design, and means of production), and
affording help (a function) are here elegantly and
tersely combined.
We can also enjoy, perhaps, the strong rhythm of the
contrasted half-lines, noting that alliteration of the
stressed syllables takes the place of rhyme; and that

intentional obscurity of word-coinage was appreciated
by the audience. For instance, the poet refers to a mail-
coat only by its properties – being hard and hand-
linked (line 551), and talks of ‘weaving’ or perhaps
even ‘sewing’ an armoured shirt (line 406), though
word-meanings shift over the centuries – and
sometimes much more quickly: it is dangerous to
guess meanings from apparently familiar words.
Obscurity and guessed meaning are features of poetry
that we do not want to reproduce in our requirements.
‘smiÞ / smith’ (the letter Þ is the modern ‘th’, as in
‘Þe olde tea shoppe’ by the way) is plainly the Old
English for engineer, the person who designs and
makes things.
‘orÞancum’ contains the root of the modern word
‘think’. Tolkien named Saruman’s tower and fortress
Orthanc or ‘cunning mind’. In Beowulf it seems to
mean ingenious use of knowledge, applied skill or
artifice. The use of a specialised vocabulary, which on
the surface appears to consist of ordinary words, is just
as much a challenge for analysts trying to understand a
new domain as for readers of poetry. And reading
someone else’s interpretation or translation, even a
good one, is no substitute for seeing the original text or
stakeholder.
The finished product, the hero’s shining Byrnie, the
‘séaronet séowed –– smíthes ortháncum’ is an
ancient vision of requirements put perfectly into
practice. Safety-critical ones, at that.

© Ian Alexander 2004

Special Guest Proverb
This issue’s proverb (one of my favourites) may need
to be prefaced by explaining that in stone-masons’
yards and gardening centres, almost any kind of rock
except slate, white limestone, flint, clay or soft sand
(yes, geologists think clays and sands are rocks) is
called ‘granite’.

That is properly a crystalline igneous rock composed
entirely of quartz, feldspar, and mica. It is (of course)
not to be confused with quartz-syenite, granodiorite,
rapakivi-porphyry, plagioclase-porphyry, or (naturally)
any kind of metamorphic rock such as granite-gneiss
or mica-schist. I hope that’s clear.

So…
‘Geologists take NOTHING for Granite’

(T-shirt slogan)

And of course, we shouldn’t take anything for granite
when trying to understand people’s requirements
either. Been there, done that, got the T-shirt.

RE-Creations
To contribute to RQ please send contributions to Ian Alexander (ian @ scenarioplus.org .uk).
Submissions must be in electronic form, preferably as plain ASCII text or rtf. Deadline for next issue: 15th March 2005

Im
ag

e
©

 N
at

ha
n

T
ud

or
 A

rm
ou

ry
 2

00
4

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 17

17

RE-Publications
Requirements-Led Project Management
Discovering David’s Slingshot

Suzanne & James Robertson
Addison-Wesley, 2004
ISBN 0-321-180629
.

This elegant and informative book is the follow-up to
the Robertsons' wildly successful Mastering the
Requirements Process (1999) (MRP). It isn't very often
that a review finds he can't put a technical book down,
but it happened this time. Every page is full of wisdom
gained by experience: and more than that, it comes
from "observing our clients, participating in project
teams, and listening to the wiser people in our
industry."

"Never go to a meeting without a prototype"

This book is the product of seriously good consultancy
over "more than a quarter century"; and that is
supported by beautifully clear writing, not to mention
James Robertson's fresh and witty illustrations.

Pundits and textbook authors have been arguing for
well over a decade that projects absolutely must
straighten out their requirements, or they're bound to
go wrong. So why haven't project managers listened?

Two obvious reasons spring to mind:

• we're preaching to the choir, not to the sinners
outside: i.e. managers don't read requirements
books;

• our sermons haven't spelt out to managers and
decision-makers what they'll get back if they do
their requirements better.

The Robertsons address managers directly in their own
language. What is the Return on Investment (RoI) of
requirements? Chapter 2 talks all about it. What should
managers do, given that time and resources are short?
Each chapter ends with practical sections

• What Do I Do Right Now?

• What's the Least I Can Get Away With?

That doesn't sound like High Priest-speak, with the
swish of flowing robes barely audible through the
jargon. It's the sound of helpful companions who know
that the job of running a project is stressful.

Chapter 3 looks at Project Sociology. I had better
confess that I get a mention for having worked with
Suzanne on the Onion Model of project stakeholders.
But the chapter does far more than explain the layers
of the onion and the roles involved; the discussion
ranges effortlessly over the team structure needed for
decision-making, like the Botswanan Kgotla, and
Belbin's wonderfully practical analysis of team roles.
The point is that nobody can do everything, but a team
can. Teams are built, says Belbin, of people such as
creative and imaginative 'plants'; confident
'coordinators'; cooperative 'teamworkers';
conscientious 'completers'; single-minded 'specialists',
and others. You need to choose people who are not
only eligible for a job, but suitable, having the right
personality attributes. And the chapter shows how to
put all this knowledge to good use.

Chapter 4 turns to the core of requirements work:
discovering what people need. This touches on the
processes described in their MRP book, but with a
different slant: what do you need to ensure happens on
your project. "Requirements are free if you pay for
them" is one of the paradoxical pieces of advice and
wisdom.

Chapter 5 has the provocative title 'Inventing
Requirements'. Of course it's something you're not
supposed to do; Colin Potts wrote a famous paper on
'Invented Requirements and Imagined Customers'. But
the authors argue convincingly that analysts should
invent; engineering is after all about shaping the world
we live in. Nobody, they argue, asked for the printing
press, or spreadsheets, or the Web, or PDFs or MP3s,
but these things have found markets for themselves. As
usual, the arguments are lively, and made with well-
chosen anecdotes and illustrations (in words,
photographs, and drawings).

Chapter 6 is called Requirements Simulations, but it's
about something much wider than simulation
modelling: the use of prototypes, scenarios, hi-tech and
ultra-low-tech ways of giving people an idea of what
you might build -- always with a view to catching
more and better requirements. Prototypes can be
drawings on a whiteboard; playfulness is encouraged.
Talking like this takes courage, and doing it
successfully demands experience.

Chapter 7 manages yet another oxymoron:
Requirements for Existing Systems. Most projects are
upgrades of existing systems, and most requirements
are for enhancements. Yet, most textbooks have
blithely assumed simple 'green-field' developments,
unconstrained by awkward facts like existing

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 18

18

interfaces, legacy code, and user expectations. So it's
really nice to see a detailed and clear process for
handling change projects.

Chapter 8 looks at requirement metrics -- a vital tool
for management. Whether you believe in Function
Points or not, you can hardly avoid having to estimate
the effort and cost of your projects, and there's usually
nowhere else to start from than the requirements.

Chapter 9 looks at managing the requirements
themselves; and the people who deal with them. This is
certainly a much broader look than is usually hidden in
the acronym 'RM': but it's probably far more realistic.
What's the least that can be got away with? A list of
requirements deliverables, suggest the authors -- all the
classes of knowledge involved.

Chapter 10 is about 'meta-management', such as of the
interfaces between projects. This higher-level stuff is
crucial, but rarely mentioned; it's the bigger, systems
engineering picture that seems to be left out of
management school courses.

Finally, Chapter 11 focuses on 'Your Requirements
Process': again, covering some of the ground of MRP,
but from a different perspective: not doing the tasks,
but choosing which set of tasks, which process to use.

This is a book with a grand scope but a practical
purpose. It is well-conceived and beautifully produced.
Let us hope that managers read it and adopt some of its
many suggestions: they should.

© Ian Alexander 2004

Book Review: Discovering Real Business
Requirements for Software Project Success
Robin F. Goldsmith
Published by: Artech House, 2004
ISBN 1580537707

"You folks start coding.
I'll go find out what the requirements are." (page 31)

Ah yes. With humour along the lines of Fred Brooks'
Mythical Man-Month, it is at once clear that Goldsmith
knows what he's up against: requirements are seen as
obvious, trivial, small bits of documentation that can
be left for an idle moment... and projects break time
after time as a result. The challenge isn't to do anything
terribly complicated; it's to get something simple done
properly. As Richard Stevens used to say, "Making
good wine is simple, but not easy".

Goldsmith, an experienced consultant, enters a
crowded market with a distinctively different
requirements book: on discovery. There are very few
other books on requirements discovery as such, though
many touch on it. Ellen Gottesdiener's Requirements
by Collaboration is certainly a discovery phase book,
though it largely focuses on use case workshop
techniques.

But perhaps discovery (despite the title) isn't the half
of it. Much of the book is about what Goldsmith calls
"testing" the requirements (perhaps "validating" would
have been a happier choice):

Moe: I know 20 ways to test business requirements.
Joe: Well, there's the regular way...
Moe: 21 ways! (page 17)

The two things are of course tightly coupled -- there is
no such thing as a tidy waterfall going from discovery
to documentation to validation: these things go along
together. In fact Goldsmith eventually lists no fewer
than 64 techniques, of which 11 are specifically about
"revealing overlooked requirements" (which itself is
about validating a requirement set), and the rest are
about "testing" or validating the requirements, though
in the process they'll often help to discover
requirements and fix requirement weaknesses.

Chapter 1 looks at the disconnect between what
everybody says: that requirements matter a lot; and
what everybody does: they work on projects doing the
wrong things and doing things wrong because the
requirements were poor.

Chapter 2, The Regular Way, looks at traditional
review techniques. The hint in the chapter title is,
plainly, that there is a whole world of exciting and
better alternatives.

Chapter 3, Real requirements, goes into the "as is"
versus the "as should be" (what Michael Jackson calls
the indicative and optative moods), and takes a critical
look at the Business vs System requirement distinction.

Chapter 4 looks at evaluating the form rather than the
content of requirements. Goldsmith rightly points out
that rules don't apply evenly across the board; he'd
surely agree with Søren Lauesen's Software
Requirements - Styles and Techniques that different
forms are needed for different situations -- a security
requirement looks very unlike a reliability one, for
instance. So the different "tests" -- magic words,
ambiguity, being positive, etc, are guidelines rather
than absolutes.

Chapter 5, Discovering real requirements, begins by
observing the commonplace, that users never know
what they want. Requirements, in other words, cannot
be captured, but must be invented, hunted down as
Detective Columbo hunts villains by piecing together
the available evidence.

Chapter 6 seems in some ways to be the heart of the
book: the Problem Pyramid. This is a simple but
powerful technique - something like a template -
identifying the problem, the measurable benefit before
and after, the cause (as is) of the problem, the what
(should be), and the how (system spec, design). This is
good stuff, simple and effective, and not I think quite
like anyone else's approach (though it contains hints of
Tom Gilb's Gist and so on, and of Suzanne Robertson's
Fit Criteria).

Chapter 7 is on Applying the techniques.

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 19

19

Chapter 8 is called Data gathering, but actually it's
much better than that: it's about requirements
discovery, elicitation, detective work, whatever. It
covers a wide range of techniques from surveys and
literature searches to prototyping, JAD, observation
and work experience, and a detailed chunk on
interviewing. The advice is supplemented by solid
warnings (surely based on experience) and a worked
example. An excellent chapter.

Chapter 9 is called Formats for analyzing
requirements, but it's about the need to find out what
we don't know, which means becoming aware of it, a
paradoxical thing at best. This is very much a fresh
take on the familiar types of analysis diagram, plus
some that might be less familiar, such as cause-and-
effect graphing (a simple and elegant way of drawing
business rules). The different techniques each give
another angle on a problem, an approach that
Goldsmith calls "taking a CAT scan" from the
complex medical imaging technique that reveals
hidden details in three dimensions.

Chapter 10, Key to completeness, looks at that most
difficult attribute, whether a set of requirements is in
fact good enough to go. One way is to document end
to end scenarios using swimlanes to give a "customer
view" (he means operational stakeholder). This is
obviously essential (in some form): omitting it is a
major cause of project failure.

Chapter 11, Formats for documenting requirements,
dives into IEEE Std 830-1998 (which you might think
a not particularly wonderful standard); then looks at
Use Cases ("today's most commonly favored format
for documenting requirements"); and then the more
traditional "hierarchical itemized deliverables" that
constitute the "as should be" part of the Problem
Pyramid. These are supported by a dataflow model of
the high-level conceptual design.

Chapter 12, Finding overlooked requirements, suggests
a list of "tests" such as whether you've forgotten any
interfaces or quality requirements, whether you've
checked to see if you conform to laws and regulations,
and so on. These are all sensible, corresponding to the
use of templates for NFRs, and stakeholder modelling.

Chapter 13, Checking requirements accuracy and
completeness, proposes another twenty "test" methods,
many of which are Sommerville & Sawyer-like good
practice guidelines. The chapter covers a great deal of
ground in a few pages, and some of the "tests" scuh as
"balancing conflicting requirements trade-offs"
deserve much more than the half-page that they get.

Finally, Chapter 14, Measuring [the] proof of the
pudding, goes into cost-benefit analysis and other
checks of whether you have got, or will get, what you
want. One is to "define system requirements". Of
course whole volumes have been written about that;
but perhaps that's the point: people dive into
specification and design before the problem is properly
characterised. The hard bits are the easy bits, and vice

versa. A little more attention to discovery and
validation would be a good thing.

All in all, this is a very welcome book. It is practical
and down to earth, to the extent that there is no
bibliography, though in fact a score of references are
scattered through the chapters. It is not that Goldsmith
is not aware of the literature; rather that from a
practitioner's viewpoint, he mostly sees little need to
refer to other sources. The exceptions are to make a
specific point, and they have an industrial feel – the
Standish Group (in the shape of the much-quoted
Chaos report), Fagan (inspections), and the IEEE
software engineering "body of knowledge".

If you are involved in creating or reviewing
requirements in industry, this book is essential
homework. It's not too long, and every page contains
practical and worthwhile advice. Buy a copy now.

© Ian Alexander 2004

Choosing and Using Statistics
A Biologist's Guide
by Calvin Dytham
Published by Blackwell 2003
ISBN 1405102438

As I said in my review of Mathematics Handbooks
(RQ 33), I've felt a need for some time for a clear and
up-to-date guide to the maze of statistical techniques
that one is confronted with when trying to analyse data
– such as the results of a questionnaire or an
experiment.

There are some statistics books meant for engineers,
but all of them that I've looked at so far have been
forbiddingly unhelpful: basically you have to know
what you want to do before you start, and that's
precisely the problem that needs to be solved. The
'here's a method, and these are the equations for it' sort
of engineering approach is no use. This is firstly
because the reader needs to know the criteria for
preferring one method over another in a given
situation; and secondly, because there is now so much
excellent software on the market (much of it available
as well-crafted freeware or shareware – see e.g.
http://members.aol.com/johnp71/javasta2.html) that
the task is hardly likely to consist of following a
complicated set of equations with a spreadsheet,
programming language, calculator, or pen-and-paper
as the older books implicitly suggest.

Therefore it comes as a breath of fresh air to read

"most students do not really care how or why
the test works. They do care a great deal that
they are using an appropriate test and
interpreting the results properly. I think that
this is a fair aim to have for occasional users
of statistics."

That is the voice of an expert who realises, albeit with
sorrow in his heart, that users have a different and
valid point of view: their specifications concern the

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 20

20

what, not the how, the results not the mechanisms. Of
course there's a lesson in there for requirements people
too. It's perhaps illuminating that this degree of insight
comes from a book intended for the relatively
technophobic biology student or researcher, rather than
for engineers.

Happily, the truth is that a statistical technique remains
invariant regardless of who applies it. In the old days,
technical authors were advised to write for the
Geologist, someone who was well-informed in his own
field, but only an intelligent layman in whatever was
being written about. So perhaps a book for biologists
should have just the right tone for non-statisticians of
any profession.

The heart of Dytham's book is a Key to statistical
techniques. It occupies the whole of Chapter 3. Each
question takes about 8-12 lines of text, sometimes even
more, and there is often simple advice about whether
the relevant technique is any better than similar
options.

Each leaf node of the tree of questions leads to a
section in the rest of the book. A typical statistical
method, such as the t-test, gets several pages of
coverage. First the purpose of the method is described.
Then an example with dummy data is provided. Then
instructions are given for running the test using three
popular statistics packages: SPSS, MINITAB, and
Excel. The introduction explains that this was the same
set as in the first edition; for the second edition, the
author considered Systat, Genstat, SAS, Statistica, S/S-
plus-R and GLIM, but "there was surprisingly little
consensus on the packages to add" – so he didn't add
any. This was a wise choice: the book would have
become unwieldy (and expensive) without becoming
any easier to use.

I tried some of the techniques with Excel (as I had it
already) and then looked around for a suitable package
for the more advanced techniques that I needed. The
main commercial packages work out at over $1000 per
seat, so I soon found myself looking at cheaper
alternatives. One that is easy to use, free, and
remarkably powerful is PAST, aimed at
Palæontologists! – but none the worse for that. The
truth is that once you know what you're trying to do

and which methods you should use, getting a tool to
work is mostly a matter of shovelling the data into the
right-shaped heap (and no equations in sight).

The book is introduced (Chapter 1) with a simple
'Eight steps to successful data analysis' recipe, which
consists of planning, planning, and planning -- it's
much nicer to design your survey or experiment to be
easy to analyse with a good chance of getting a clear
result, than to pore over a heap of possibly-
meaningless data afterwards. Of course, human nature
being what it is, statisticians and stats books often have
to face up to the latter situation.

Chapter 2, 'The basics', explains in a non-patronising
way what essential concepts such as observations,
hypothesis-testing, P-values, sampling, experiments
and even statistics really mean.

There follow chapters on: Hypothesis Testing,
sampling and experimental design; Statistics,
variables, and distributions; Descriptive and
presentational techniques. These contain simple and
good advice for beginners who want to get clear results
and to present them plainly.

The body of the book is essentially a list of
descriptions of techniques, indexed by the Key. The
chapters are: tests to look at differences; tests to look at
relationships; and tests for data exploration.

The book closes with a list of statistical symbols and
letters, a glossary, the assumptions made in the tests,
and some hints and tips (like not using 3-D graphics
effects to tart up your graphs). There's a summary
classified table of tests, and a decent index.

This book met my needs (and ended quite a long
search). I can recommend it to anyone who's trying to
design a way of collecting evidence or experimental
proof but has not much idea how to do the statistics.
Much more advanced texts exist; Dytham recommends
Zar's Biostatistical Analysis or Sokal and Rohlf's
Biometry. No doubt there exist excellent advanced
texts for engineers too. But for the rest of us, Dytham
is a splendid companion.

© 2004 Ian Alexander

RE-Sponses
RQ welcomes comments and reactions to articles and
reports published in its pages.

Requirenautics Quarterly Issue 33 (September 2004)

The Newsletter of the BCS Requirements Engineering SG Page 21

21

RE-Sources
Books, Papers
For a full listing of books, mailing lists, web pages and
tools that have appeared in this section in previous
newsletters, see the RQ archive at the RESG website:
http://www.resg.org.uk
Al Davis' bibliography of requirements papers:
http://www.uccs.edu/~adavis/reqbib.htm
Ian Alexander's archive of requirements book reviews:
http://easyweb.easynet.co.uk/~iany/reviews/reviews.htm
Scenario Plus – free tools and templates:
http://www.scenarioplus.org.uk
CREWS web site:
http://sunsite.informatik.rwth-aachen.de/CREWS/
Requirements Engineering, Student Newsletter:
http://www.cc.gatech.edu/computing/SW_Eng/resnew
s.html
IFIP Working Group 2.9 (Software Requirements
Engineering):
http://www.cis.gsu.edu/~wrobinso/ifip2_9/
Requirements Engineering Journal (REJ):
http://rej.co.umist.ac.uk/

RE resource centre at UTS (Australia):
http://research.it.uts.edu.au/re/
Volere:
http://www.volere.co.uk
DACS Gold Practices "Manage Requirements":
http://www.goldpractices.com/practices/mr/index.php

Mailing lists

RE-online (formerly SRE):
http://www-staff.it.uts.edu.au/~didar/RE-online.html
The RE-online mailing list acts as a forum for
requirements engineering researchers and practitioners.
To subscribe to RE-online mailing list, send e-mail to
majordomo@it.uts.edu.au with the following as the first
and only line in the body of the message:
subscribe RE-online <your email address>
LINKAlert:
http://link.springer.de/alert
A free mailing service for the table of contents of the
International Journal on Software Tools for
Technology Transfer.

RE-Actors: the committee of the RESG
Patron:
Prof. Michael Jackson, Independent Consultant,
jacksonma @ acm.org.

Chair:
Dr Pete Sawyer, Lancaster University, Computing
Department,
sawyer @ comp.lancs.ac.uk.

Vice-Chair:
Dr Kathy Maitland, University of Central England,
Kathleen.Maitland @ uce.ac.uk.

Treasurer:
Prof. Neil Maiden, Centre for HCI Design, City
University,
N.A.M.Maiden @ city.ac.uk.

Secretary:
David Bush, National Air Traffic Services,
David.Bush @ nats.co.uk.

Membership secretary:
Dr Juan Ramil, Computing Department, The Open
University,
J.F.Ramil @ open.ac.uk.

Newsletter editor:
Ian Alexander, Scenario Plus Ltd.,
ian @ scenarioplus.org .uk

Publicity officer:
William Heaven, Department of Computing, Imperial
College,
su2 @ doc.ic.ac.uk

Regional officer:
Steve Armstrong, Computing Department, The Open
University,
S.Armstrong @ open.ac.uk.

Student Liaison Officer:
Carina Alves, University College London, Department
of Computer Science,
c.alves @ cs.ucl.ac.uk

Immediate Past Chair:
Prof. Bashar Nuseibeh (The Open University)
B.Nuseibeh @ open.ac.uk

Industrial liaison:
Dr. Wolfgang Emmerich, University College London,
W.Emmerich @ cs.ucl.ac.uk.
Suzanne Robertson, Atlantic Systems Guild Ltd.,
suzanne @ systemsguild.com
Gordon Woods, Independent Consultant,
Gordon @ cigitech.demon.co.uk
Alistair Mavin, Rolls-Royce,
alistair.mavin @ rolls-royce.com

