
Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 1

Requirenautics Quarterly
The Newsletter of the Requirements Engineering
Specialist Group of the British Computer Society

http://www.resg.org.uk

©2002, BCS RESG Issue 27 (November 2002)

RE-Locations

RE-Soundings... 1
Editorial... 1
Chairman’s message.. 1

RE-Treats ... 2
Using Formal methods to Understand Requirements
better.. 2
Security Requirements... 2
Mastering the Requirements Process 2
Requirements Modelling ... 3

RE-Calls ... 3
11th IEEE International Requirements Engineering
Conference (RE’03) .. 3

RE-Readings... 3
Scenarios Work! Improving Requirements Engineering
with Use Cases and Scenarios ... 3
Using Formal Models to Understand Requirements
Better ... 5
Workshop on Goal Oriented Business Process Modeling
(GBPM’02).. 7
Specification of Distributed Systems Security Policies Dr
Emil Lupu (Imperial College)... 10

IEEE Joint International Requirements Engineering
Conference (ICRE'02 and RE'02) 11
1st International Workshop on Traceability 12

RE-Papers... 15
Requirements Engineering Research Prototypes – A
short survey of tools ... 15
Requirements Tracking: A Streamlined Approach.............. 16
Requirements, Myths and Magic ... 18
Generation Of Requirements From Scenarios 19

RE-Publications .. 22
Book Reviews... 22
Requirements by Collaboration Workshops for Defining
Needs.. 23
Introduction to Requirements Engineering 23
Tell Me A Story.. 25

RE-Sources... 26
Mailing lists ... 26

RE-Actors... 26
The committee of RESG .. 26

RE-Funds.. 27
Minutes of the 8th Annual General Meeting....................... 27

RE-Soundings

Editorial

Welcome to the bumper Christmas issue of RQ27. The
big event since RQ26, of course, was the combined
ICRE and RE conferences held, for the first time, this
side of the Atlantic in Essen. If you were unlucky
enough not to make it, you can at least read Ian
Alexander’s account later in this issue.

Meanwhile, books on RE continue to proliferate like
requirements change requests. The astonishing thing is
that the quality of almost all the books is so high. Now,
having fed you the link, I can’t pass up this opportunity
to plug one of the new books, co-authored (with
Richard Stevens) by our very own Ian Alexander and
bringing to three the number of books on RE by
members of the RESG committee. Ian and Richards’
book is a cracker, as you will see from Suzanne
Robertson’s review. Get your request to Santa now.

Pete Sawyer
Computing Department, Lancaster University.

Chairman’s message

I’m not sure if it’s the outstanding efforts of our
Publicity Officers, Juan Ramil and Sebastian Uchitel,
or simply a revival of public interest in requirements
engineering, but all the indications are that
requirements are in fashion! The recent RE’02
conference in Essen, Germany, saw record attendance
and the launch of several new RE books, including an
excellent one by our very own RQ reporter, Ian
Alexander. I am not sure when Ian had time to write
the book, given his prolific contributions to this
newsletter, including his insightful reviews of other
authors’ RE books!

RESG events have been very well attended, with over
100 attendees at the "Scenarios Work" half day
meeting in July, and about 80 attendees and the
RESG’s first industrial networking event,
"RE:FRESH". The calendar of events for the coming
months is in this newsletter, so this is the time to make
a note of these in your diaries!

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 2

As we approach the year end, it is time to send out
RESG membership renewal requests. After a year of
free subscription to encourage RESG membership, to
consolidate RESG mailing lists, and to give
Membership Secretary, Steve Armstrong, a chance to
settle into his new role, we must now return to our
usual charging of nominal membership fees to cover
our costs. If our membership renewal process has
worked correctly, you should have received with this
copy of RQ a request to renew your membership. I
would like to invite you to renew your membership for
a further year, by returning the enclosed form with
your payment. As always, membership of the RESG
entitles you to receive this newsletter free of charge,
and to attend many RESG and related events at
significantly reduced rates.

As an added incentive to renew your membership, I am
happy announce that we have negotiated, for RESG
members, an additional substantial discount on
personal subscriptions to the Requirements
Engineering Journal published by Springer (£10 for a
year's electronic subscription; £30 to have the hardcopy
included as well!). We have also managed to negotiate
substantial discounts on personal subscriptions to two

other Springer journals, Cognition, Technology &
Work, and Knowledge and Information Systems.
Information about these offers is enclosed with your
membership renewal.

One last comment on membership. The RESG offers
Academic and Industrial Corporate memberships,
which entitle member organisations to up to 15 named
individual memberships, as well as an opportunity to
include a half page advert in RQ. So, if there are a
number of individuals in your organisation interested
in RE, why not team up and join the RESG as a group.
Only one person needs to act as the Corporate Contact,
while the others receive RQ and other benefits hassle-
free!

Finally, I would like to end by wishing all RESG
members the Executive Committee's warmest Season's
Greetings, and best wishes for a happy and successful
New Year.

Merry Christmas, Happy Hanukah, and Eid Mubarak!

Bashar Nuseibeh
The Open University

RE-Treats
For further details of all events, see www.resg.org.uk
Next event organised by the group.

Using Formal methods to Understand
Requirements better

A one-day symposium

Date: 09.15-17.00 6th November 2002
Location: Imperial College, London
Contact: Alessandra Russo.
(ar3@doc.ic.ac.uk)

This one-day event will focus on the use of formal
models and formal reasoning to enable a better analysis
and understanding of requirements specifications. The
event will include a morning tutorial by Professor Axel
van Lamsweerde on goal-oriented requirements
engineering and an afternoon of presentations and
panel discussion from leading European researchers
and practitioners. Research presentations will illustrate
recent developments in formally-based techniques for
requirements engineering, providing a forum for open
technical discussion. The practitioners’ presentations
will illustrate the use of some of these techniques in
real software development projects.

The event will be of particular interest to researchers
and students, as well as anyone interested in learning
about and/or challenging what formal techniques can
offer to the requirements engineering process.

Speakers at the event include leading academics and
practitioners in Requirements Engineering:

• Professor Axel van Lamsweerde, Catholic
University of Louvain, Belgium

• Professor Jeff Kramer, Imperial College London,
UK

• Dr. Paolo Giorgini, University of Trento, Italy
• Dr. Anthony Hall, Praxis Critical Systems

Limited, UK
• Tim Clement, Adelard, UK.

Security Requirements

Date: 29th January 2003
Location: City University, London
Contact: Elena Perez-Minana
(Elena.Perez-Minana@philips.com)

A master class in Security Requirements Engineering:
a new event-format in which an information security
expert and a practitioner discuss the security
requirements of a practitioner’s application in front of
a live audience, of which you are invited to be part.

An event of relevance for all those concerned with the
elicitation, analysis and validation of security
requirements for computer applications.

Other events likely to be of interest to RESG members.

Mastering the Requirements Process

Date: 17-19th February 2003
Location: London
Contact: Jeanette Hall
(Jeanette@irmuk.co.uk)

A 3-day seminar and workshop. RESG members are
entitled to a 10 percent discount.

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 3

Requirements Modelling

Date: 20-21st February 2003
Location: London

Contact: Jeanette Hall
(Jeanette@irmuk.co.uk)

A 2-day seminar and workshop. RESG members are
entitled to a 10 percent discount.

RE-Calls
Recent Calls for Papers and Participation

11th IEEE International Requirements
Engineering Conference (RE’03)

8th - 12th September 2003, Monterey Bay, California
USA

http://www.re03.org

The RE conferences are a platform for research to
present novel results, for transfer of research results to
industrial practice, and for the presentation of
industrial experiences that can inform new research
directions. Two kinds of technical papers can be
submitted: research and experience. Topics of interest
include, but are not restricted to:

• Requirements elicitation techniques
• Requirements validation techniques
• Requirements management and traceability
• Requirements evolution
• Requirements, software architecture and business

architecture
• Requirements prioritizing and negotiation
• Combination of formal and informal specification

techniques
• Requirements for high-assurance systems
• Making formal techniques usable
• RE for mechatronics systems
• Specification of quality attributes
• Requirements metrics
• Tool support for RE
• Prototyping, animation and execution of

requirements
• Requirements for business systems (workflow,

groupware, e-commerce systems)
• Requirements for web-based systems
• Requirements for ubiquitous computing

• Requirements for product families
• Requirements engineering case studies and

experiences
• Cognitive, social and cultural factors in RE
• Requirements engineering education

Electronic submissions will be accepted at the RE’03
Paper submission site. Authors without web access
must make advance arrangements with the Programme
Chair at least one week before the deadline. Papers
must not exceed 10 pages in length, and must in the
IEEE CS Press Proceedings format (see
http://computer.org/cspress/).

Accepted papers must be accompanied by a signed
IEEE copyright release form. See the submission page
for information on how to submit technical papers
(research and experience), workshop proposals, panel
and tutorial proposals, doctoral workshop papers,
posters, research demos and industry track
contributions. For any other queries, please contact
info@re03.org. Revised and extended versions of a
selection of the best papers will appear, depending
upon focus, in a special issue of the Requirements
Engineering Journal or IEEE Software.

 Key Dates

• Paper abstract submissions (mandatory) 31st
January 2003

• Full paper submissions 7th February 2003
• Notification sent to authors 11th April 2003
• Camera-ready papers received 13th June 2003
• Poster submissions 26th April 2003
• Workshop proposal submissions 29th March

2003
• Tutorial proposal submissions 29th March 2003
• Doctoral symposium submissions 29th March

2003
• Research demo submissions 26th April 2003
• Industry track submissions 1st March 2003

RE-Readings
Reviews of recent Requirements Engineering events.
All reports by Ian F. Alexander

Scenarios Work! Improving Requirements
Engineering with Use Cases and Scenarios

RESG Event, July 10 2002, University College
London.

Ian Alexander (Meeting Chairman) welcomed about
100 people to a packed lecture hall in the handsome
victorian Cruciform Building (formerly University
College Hospital – the corridors still smelt of
carbolic!).

Roland Leibundgut (Zuhlke Engineering) introduced
the subject with a presentation on Use Cases in the
Project Lifecycle. He asked for a show of hands as to

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 4

who had ever written a Use Case, and certainly a
majority of the audience had.

A Use Case was not just a bubble on a diagram but
could be as much as 80 pages of text; more than 3
pages was common. Use Cases were helpful in
defining system boundaries, guiding development,
specifying tests, writing end-user documents, as well as
monitoring progress and planning iterations. They
could only describe functional requirements. Advanced
UML (Unified Modeling Language) features such as
extensions and inheritance were rarely needed and
often abused, e.g. for functional decomposition, which
was definitely not the intention.

Alstom wanted to sell gigantic steam turbines over the
web – in a photo, the humans were as small as UML
stickmen. Turbines have a long life, so project
documents had to be readable in 30 years' time. XML
(eXtensible Markup Language, a development of
SGML) was therefore chosen as a stable format –
Leibundgut was unsure whether the .doc format would
be around in 2030. The RUP (Rational Unified
Process) style of use cases covered all the functions;
NFRs were described in traditional requirements
format. A good part ("80%") of the use cases were
identified in the RUP inception phase; most were then
defined in the elaboration phase, and all were
completed in the construction phase – i.e. change was
accommodated and iteration was expected.
Traceability was therefore vital. Traces and
documentation were handled with simple XML tools;
obviously, with an open format, any compatible tools
could later be deployed to read and analyse the
requirements.

Ian Alexander (Independent Consultant) introduced
the concept of Misuse Cases – use cases with hostile
intent – originally created by Guttorm Sindre and
Andreas Opdahl, though negative scenarios have been
around since cavemen hunted Woolly Rhinoceroses
across northern Europe and wondered around the
campfire if what they were about to do was the last
thing they'd ever do. He illustrated this with a cave-
painting from the Dordogne, and worked examples in
the automotive and railway domains.

These were negative scenarios, used to help elicit
system goals and requirements. If a scenario is a
sequence of actions leading to a goal desired by a
person or organisation, then a Negative Scenario is a
scenario whose Goal is desired by a hostile agent (not
necessarily human), and desired not to occur by the
organisation in question. In other words the approach is
a way of thinking about intentional opposition to a
system's goals. This leads naturally to thinking about
ways of mitigating threats, and where necessary
handling conflicts between goals. It was helpful when
doing this to use a few stereotyped relationships
between Use and Misuse Case goals: threatens,
mitigates, aggravates, and conflicts with. These could
be handled simply and elegantly with a few rules (e.g.,
a link from a Use Case to a Misuse Case is by default a
mitigation).

He demonstrated the ability of Scenario Plus (a free
Use/Misuse Case toolkit for DOORS) to represent and
display a design trade-off model, filtering to show only
the desired relationships.

We then adjourned for Tea – in an enormous queue –
and vigorous discussion across the road in the Pearson
Building.

Neil Maiden (City University) told some Tales from
the Trenches: Using Scenarios to Specify an Air
Traffic Control System – a topical matter, given the
catastrophic failure a week earlier (a head-on collision
of two airliners) in the skies over Lake Constance. He
recounted how controllers in a workshop had laughed
at the question 'and what if the controller was not
present?' – perhaps the question seemed to them
outside the boundaries of "the system", but of course
'the man in the loop' is a source of numerous classes of
exception.

The Crews-Savre tool helps to generate and walk
through scenarios. In Air Traffic Control (for
Eurocontrol), the CORA-2 tool will be a redesigned
conflict resolution assistant. Crews-Savre is the
cornerstone for turning all CORA-2 scenarios into
requirements. Other techniques being applied are i*
agent dependency and goal modelling; creative design
workshops (with musicians and chefs to get the ATCs'
creative juices flowing; VOLERE-based requirements
management; human activity modelling; and scenario-
based impact analyses.

In such work you were not just specifying software;
you were changing the work processes of the
controllers, i.e. redesigning work in a Checklandian
socio-technical system. The basic approach was to
generate normal course scenarios, and then create
numerous what-if? Exceptions as branches off those
normal courses, using rules based on the type of action.
For instance, if an action was classed as cognitive, then
you could throw in all the generic cognitive exceptions
such as memory recall failure, confused thinking, and
so on. Maiden "raided taxonomies of errors" from HCI
to identify 40 common domain-independent or generic
exceptions. He also elicited (by laddering, and through
scenarios) 130 air-traffic-specific exceptions. A
facilitator/scribe team then plodded through the RUP-
style use cases, asking broadly the same exception
questions in each one.

Did the tools help to get more requirements? Yes; in 10
months before the walkthroughs, 247 operational
requirements were gathered (i.e. 6 per week). 3 weeks
of walkthroughs created an additional 134 new
approved requirements (i.e. 45 per week). In the
process 254 normal course events and over 3000
exceptions were considered. What is more, the new
requirements were more tightly defined and more

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 5

verifiable, and often replaced old brainstormed
requirements.

But disappointingly, only 4 requirements came from
domain-specific scenarios: 79 came from generic
exceptions, and 51 from normal courses. In a way this
is good news: standard questions will elicit almost all
the requirements, perhaps. This suggests that the
walkthroughs should have been done earlier to avoid
timewasting. Another possibility is that the domain-
specific exceptions were too narrowly defined (this
might be a feature of the domain, as ATCs are
notoriously procedural thinkers). In feedback, people
said that they were impressed, and that the process was
"exhaustive" – you can take this either way.

Steve Armstrong (Open University) presented some
controversial views on The Abuse of Use Case
Techniques. For instance:

• Scenarios introduce a time-ordering, but this is a
design. "How might a given task unfold?" is a
design question.

• UML Use Cases provide a structural view, in
contrast to sequence (swimlane) and activity
(flowchart) diagrams which provide a dynamic
view. (Hmm, maybe, but isn't the time dynamic
admittedly inherent in the courses of events
embedded in use cases?)

• The Lending Library example is popular amongst
academics teaching UML; but Jacobson never
intended Use Case models to describe human
activities in soft systems. (Hmm, mmm, but if
something can apply to a system with software
agents, why not hardware agents, robots, or even
humans? Aren't they all systems?)

• UML brought something to the party, but there
was sill a huge gap between developers and users,
and better CASE (Computer-Aided
System/Software Engineering) tools were still
urgently needed. (OK, maybe that one's not too
controversial.)

• One size did not fit all; Use Cases and
Walkthroughs weren't enough.

• Awareness (of how people work, of the (socio-
economico-politico-technical?) situation of any
system) is all.

The meeting came to a close with a great deal of
informal discussion which continued round the corner
in the Jeremy Bentham. He was a distinguished
pioneering physician, and he is evidently still
frequently consulted for his opinion, as evidenced by
the number of stethoscope-wielding visitors. A straw
poll was taken on whether people at the meeting would
like to attend informal Birds-of-a-Feather gatherings in
London, and there was an overwhelming response, so
David Bush will shortly be organising the first BoF.
The speakers' slides are on the RESG website
(www.resg.org.uk).

Using Formal Models to Understand
Requirements Better

RESG Event, November 6 2002, Imperial College
London.

We had two chairpersons for this event (or three if you
count Alessandra's 6-weeks-from-term baby), Bashar
Nuseibeh and Alessandra Russo. They were delighted
to welcome an all-tickets-sold audience to Imperial
College and the RESG.

Axel van Lamsweerde gave a morning tutorial on
Goal-Oriented Requirements Engineering. He was on
top form and gave an enjoyable and readily-
understandable overview of RE from the point of view
of goal modelling. Goals are the why; requirements
and assumptions are the what, he said. Goals had been
ignored by UML, but guru Fowler agreed they were
needed. (Mind you, guru Cockburn treats use case
titles as a hierarchy of functional goals.) Goals were
prescriptive (optative in Jackson's parlance), unlike
domain properties which were descriptive (indicative).
In other words they were essentially high-level
requirements. They didn't have to be functional; non-
functional goals could be for safety, security and so on:
what the Toronto i* people call softgoals. He argued
that there wasn't much of a distinction between
functional and non-functional goals/requirements, and
it is true that there is an interplay between them. For
instance, a security NFR causes various functions to
come into being, e.g. to lock things and to record
accesses. But that doesn't make the NFR the same as
the functions that implement it, does it?

Agents always went with goals; whether human or
machine, agents co-operated to satisfy goals. Perhaps
more contentiously, goals had to be realizable, at least
at finer levels of detail when you get down to defining
exact logical conditions for them – low-level goals
were thus implicitly equated with requirements; high-
level goals were what some people call objectives.

Goal modelling could proceed top-down (the obvious
approach) or any other way; ANDing subgoals explains
the basic rationale for high-level goals; subsequent
OR-abstraction allowed you to refine the alternatives.
This analysis helped to discover conflicts, early in the
life-cycle – long before design – by being declarative
about what people wanted.

On the more formal side, you could show that a set of
requirements was "complete" if for all goals, the
requirements, assumptions and domain knowledge
entailed the goals. Obviously this could only work if
the goals were realizable 'user requirements'. Similarly,
a requirement was only pertinent if it helped to satisfy
a goal. But you absolutely couldn't show that a set of
goals was complete with respect to the real world.
Low-level goals could be verified; high-level

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 6

objectives could in Herbert Simon’s unlovely phrase be
’satisficed’ to some degree of confidence.

Goals at a high level were generally more stable, as
Annie Anton had observed, so in principle you might
be able to use goals to document product evolution
(e.g. in product lines). In theory you’d do this by
providing new alternative ways to satisfy a stable goal.
I think this may be a tall claim because old product
features can always become obsolete; cars used to have
to be able to tune to Medium Wave and to play Audio
Cassette tapes, for instance; while it may be true that
high-enough objectives (’play music’) are indeed stable,
they aren’t very useful as product requirements.

Obstacles allowed you to reason about ’unexpected
agent behaviour’ in a goal model. Formally, an obstacle
obstructs a goal if and only if the presence of an
obstacle in a domain meant that the goal could not be
achieved; and that the domain definition did not
exclude the possibility of the obstacle’s existence.
Identifying and removing obstacles helps to make
requirements more complete, more realistic, and hence
more robust. However, this happy story does not take
into account the possibility that malicious agents can
be creatively hostile: there is an arms race between
your obstacle-removing tactics and the subsequent
moves of the other side. ’Obstacle’ sounds and is static;
a more dynamic approach is to deal with threat and
counter-threat as a game which won’t necessarily end,
and in which new moves are expected.

Thoughts of obstruction led naturally to consideration
of safety and security issues, including the famous
counter-example of aircraft wheels aquaplaning on the
runway to the simple assumption that the plane is on
the ground and may use its reverse thrust if and only if
its wheels are turning. Jawed Siddiqi (Sheffield
Hallam) said this was all post-hoc, and asked how you
would probe to elicit such things? Axel replied that
indeed there was "no free lunch" – you get
completeness only with respect to what you already
know about a domain. "We use obstacles all the time,
semi-formally – using patterns to provide proof", said
Axel. (Anthony Hall said over a cup of tea that safety
engineers are like old generals who always fight the
last war; safety people always prevent the crash that
happened last time.) Could goal-obstacle analysis then
ever be predictive? Axel replied that the disastrous
Uberlingen midair collision (July 2002) had in fact
already been analysed in a large (>300 goal) model
which had been completed back in March 2002. All the
six or so "perversely chosen" obstacles that occurred
simultaneously – there was only one controller, he was
overloaded, the onboard collision warning system and
the air traffic controller gave conflicting orders, etc –
were all in the model but were in different goal trees.
To be predictive, you'd have to be able to assign
probabilities to complex combinations of obstacles.

Scenarios and goals offered complementary benefits;
scenarios for elicitation and validation with people,
goals for reasoning. Scenarios were excellently
concrete and narrative, but were partial (like test

coverage), procedural, and vulnerable to combinatorial
explosion. But, said Axel, "we finish where the formal
modelling guys usually start" – goal models formed a
natural bridge between domains and systems.

In the afternoon we had four speakers and then a panel
session.

Jeff Kramer (Imperial College) talked about
Scenarios to Behaviour Models, and Back. He felt that
behaviour modelling should be part of everyone's
requirements process: you needed to go from
requirements to models to make things definite.
Scenarios were wonderful for elicitation and for
explaining why bits of behaviour were needed, but they
had no precise semantics, even when they were as
neatly documented as a UML message sequence chart.
A model was complementary to a set of scenarios; it
could be analysed and checked; it could be animated to
generate a trace (i.e. a scenario) or drawn as some
picture of the system which you could then animate in
a more visual way as a sort of simulation.

Equally, you could go in the other direction. "People
find message sequence charts easier to produce than
models", he said. So, how could you create models
from scenarios? If you treat scenarios as sequences of
activities, you can eaily put together a state machine. If
scenario 1 goes ABCD and scenario 2 goes ABCE then
state C has two exits, and so on. In general the
resulting state machine or architecture is richer than
the traces or scenarios as you start discovering implied
scenarios. If scenario 3 goes EDFG then you discover
that ABCEDFG is possible, as well as ABCDFG which
you didn't know before. You may discover ways of
getting into error states, or things you don't understand
that you can check with your stakeholders – using
animation of scenarios to give them a picture of what
the model implies.

Like Axel, Jeff said there was "no free lunch" – the
approach did not discover unknown event types. What
it could do was discover negative scenarios, certain
implied scenarios that shouldn't happen.

Axel van Lamsweerde asked about the quality of
models if they were based on instances. Jeff Kramer
replied that when you went to negative scenarios (after
the initial model-building), you often needed to
generalize: "that's an instance of the general case, one
of a class of counterexamples".

Anthony Hall asked if you put multiple scenarios into
one behaviour model? Jeff Kramer replied that the
approach did exactly that. It could handle 10,000 states
which was rich enough for significant problems. Finite
state modelling was vulnerable to combinatorial
explosion of scenarios but it was tractable.

Paolo Giorgini (Trento, Italy) talked about Reasoning
with Goal Models in the Tropos Methodology.
AND/OR trees (a la Axel) could not handle vague or
partly-defined goals. You could have networks of goals
with cycles of dependency (positive or negative), for
instance. Tropos reasons about full or partial evidence

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 7

that a goal is satisfied or denied. Intuitively these can
be based on positive and negative relationships
between goals held by actors. The reasoning is fully
axiomatized and can be applied qualitatively or
quantitatively. Tropos can propagate values (full,
partial, none) or -1.0 .. + 1.0 across a 30-goal network
in negligible time (1/100 second). You can then see
which relationships are important.

Tropos - movement - first modelled the environment as
Actors with dependencies on each other. Then it took
the ’system actor’ and modelled its dependencies –
whether these represented functional or non-functional
requirements – on actors in its environment. Then it
decomposed the global system into subsystems and
modelled the data, control (etc) dependencies between
these. Finally, it analysed the details of input, output,
and control. In this way it aimed to bridge the gap
between the early-in-the-life-cycle approach of i* and
the late-in-development approach of agent-oriented
programming. KAOS was another early approach;
UML mainly later. Tropos was unique in using the
notion of agent throughout development.

Anthony Hall (Praxis) talked about Industrial
Experience with Formal Requirements. Formality
added precision and enabled exact reasoning. Did it
really help, he asked? "It really makes the whole
development more visible" he said. He explained the
basis of the Reveal method, and gave some examples.
Requirements Engineering was about showing that the
Requirements were entailed by the Domain and the
Specification, i.e. that the requirements would be
satisfied. (In response to a question, he agreed that his
requirements were Axel's goals, and his specifications
were Axels requirements.) The domain could be
modelled formally by analysis, with business rules,
laws of physics and so on. By being precise, early, you
could discover problems and reduce trouble during
development. For instance, smart card issuers were
naughty in assigning card IDs so you in fact needed to
know the issuer, the ID, and some sort of hash function
to identify the application correctly.

Similarly in requirements you often (but not always)
needed to be formal, especially when safety or security
were concerned. On the other hand, vague high-level
objectives like improve throughput might well be
acceptable. Precise requirements could be defined in Z,
a logic notation. You could then reason about
satisfaction and detect errors and missing
requirements. Contrary to expectation, this was cheap;
Z found as many errors as unit testing, but was five
times cheaper. It found errors early too: many of the
errors introduced by specification were removed
during architecture or detailed design, and in a recent
project only one specification error survived through to
operations. Modestly but with some pride he quoted an
authentic customer statement: "The system behaves
impeccably as expected."

Axel van Lamsweerde said that he agreed 1000%, but
what of people who advocated agile methods? Anthony
Hall replied by quoting John Barnes: "Ada is not meant

to make programming quick. It's meant to make
programming slow. Slow is good". There was laughter.

Tim Clement (Adelard) talked about Dust-ExpertTM:
an example of formal methods use in industry. Almost
any powder like sawdust, flour or custard could
explode if mixed with air and ignited by a spark –
electrostatics were likely in a dust-filled factory. He
showed photographs of a furniture factory with all its
walls blown out. He had used VDM, another notation
like Z, to define the specification of Dust-Expert
precisely. Numerous useful properties of the system
emerged from the formalism; for instance, the
Graphical User Interface revealed all of the system's
internal state, and essentially always (ok, not while the
user was updating a field) exactly represented it. So
you got properties like interface predictability and
correctness of representation. Productivity was above
average for safety-related software,and there were only
1.5 errors per 1000 lines of code (a total of 42 bugs).
31of these were discovered through testing, and the
rest through field experience.

The panel session was chaired by Bashar Nuseibeh. He
asked how to justify formal models in industry. Tim
Clement said it was cheaper on maintenance. Anthony
Hall said that if the customer cared if [a system]
worked, it was the fastest and cheapest way, e.g. for
embedded software. He agreed that if you didn't care,
you didn't do it – a bank made a cold-blooded
calculation that getting a website up 2 months early got
you 200,000 extra customers, and it then cost you only
£20M to fix the problems which was worth it. "We're a
bank, we always do this."

Workshop on Goal Oriented Business
Process Modeling (GBPM’02)

Part of HCI ’02

September 2 2002, South Bank University, London

Ilia Bider (IbisSoft, Stockholm) led the 3rd GBPM
workshop, in memory of his late collaborator, friend,
and co-founder of the workshop, Dr Maxim
Khomyakov. The first workshop looked at OO and
BPM; the second at practical issues of modelling
business processes; and this one focused on Goals –
what BPM is all about.

Ian Alexander (Independent Consultant) drew the
short straw, speaking first straight after the holiday
season. He spoke about Modelling the Interplay of
Conflicting Goals. A scenario was a sequence of
activities to achieve a functional goal desired by an
organization, often modelled nowadays as a Use Case.
Hostile agents could also have goals which may
directly or indirectly threaten the organization’s goals;
these can be modelled as ‘Misuse Cases’. Interactions
between Use and Misuse Cases include MC threatens
UC; a subsidiary UC mitigates MC; a UC

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 8

unintentionally aggravates an MC (while perhaps
mitigating another); two UCs directly conflict (see
previous item - Ed.).

Depicting agents – possibly systems or parts of the
environment (like the weather) as UML stickmen was a
useful anthropomorphism; it enabled people to reason
with their social brains about agent’s goals and how to
counter them. The approach led to a simple way of
depicting and agreeing on goals, which was useful in
specific areas such as design trade-offs and the
identification of safety and security requirements.

Gil Regev (Ecole Polytechnique de Lausanne) spoke
about Regulation-based Linking of Strategic Goals
and Business Processes. The basic approach is
attractively simple: businesses can be considered as
control systems intending to maintain a target value, or
as organisms with homeostatic goals (such as keeping
body temperature constant), influenced negatively by
the environment. To my mind it was surprising that
neither control nor homeostasis were mentioned;
instead, Wiener, Weinberg, Anton, and Checkland
were referenced on aspects of systems. Perhaps
different communities use different but isomorphic
languages to describe goal-oriented behaviour.

Constancy or stability sound static, but can be
interpreted dynamically (said Ilia Bider) by talking
about constancy of growth (e.g. having a Strategic
Goal to increase market share). You then get an
Operational Goal (e.g. increase sales geographically)
which is related to the strategic goal through a Belief
that it will help to achieve it – through the operation of
a business process (e.g. set up sales forces in new
areas).

Ilia Bider said both these talks were about the
Environment and our understanding of it – which
might be true or not; and we could find out if it were
true by modelling the environment and simply by
trying out your model in the world and seeing if it
works. Hence there is feedback to bring our
understanding closer to real life, which is itself a
higher-level (regulative, if you like Kant) process
applied to lower-level business process interventions.

Erik Perjons (Stockholm University) (in a paper co-
authored with Ilia Bider and Paul Johanneson) spoke
about Goal-Oriented Patterns for Business
Processes, focussing on goals rather than on activities.
He described a state-oriented approach to describe
business process patterns. Quoting Fowler, a pattern is
an idea useful in one context and hoped to be useful in
others. Hammer & Champy define a BP as a partially-
ordered set of activities to reach a goal. Different
organisations may have different sequences, or
somewhat different sets of activities, but shared goals
and basically similar processes, so perhaps common
patterns can be identified.

Approaches include input/output flow as in IDEF0,
workflow sequences of activities as in UML Activity
charts (flowcharts), agent-related workflow as in RAD,

and state-flow looking at changes in the world caused
by activities (a bit like IDEF3). This last is Perjons’
favourite. Two BPs are similar if they have state spaces
with the same topology, their goals are similar, and
they have the same kind of valid movements in the
state space. For instance, ordering increases the
number of ordered goods (on the Y-axis); delivering
increases the delivered goods (on the X-axis). To meet
the goal that Ordered = Delivered, the final state must
be on the line X=Y; and similarly for all other
dimensions of the pattern. Goals thus become surfaces,
not points, in the state space!

Ann Lindsay said that BPs were about what you know
happens, but we need instead to learn to adapt, and BP
modelling isn’t helping people to adapt.

Ilia Bider said that to use patterns to synthesize
processes, you needed to specialize them, adding
procedures to move from one state to another, and
adding constraints (e.g. you can’t move back in time –
you can return goods or deliver more, but not actually
undeliver).

Dick Schaap (University of Groningen) spoke on
defining a Goal-Reached, Energy-Used Value pair as
a Business Process Measure. His aim is to describe
rather more scientific ways of improving performance
than the rather vague ideas in the literature such as
‘eliminate, simplify, integrate, automate’ (Peppard and
Rowland).

His idea is to plot Goal Reached on the Y-axis, and
Energy Used on the X-axis. If you have some
uncertainty or variation in each, you’ll get an elliptical
GR/EU blob instead of a point for each activity. You
can use a UML-like swimlanes chart to show the
sequence of activities organized by actor, and then
construct a table of goals reached (presumably one can
tell if a goal is 100% reached, or less) and actor-time (a
crude measure of energy) per activity. From a
flowchart he ran some simulations to evaluate GR/EU
results, getting a family of curves or lines. He admits
that both Goal Reached and Energy Used can become
complicated and unrealistic, so the challenge is to
simplify them sufficiently. With multiple processes
you also need to address issues of scheduling people
and other resources to avoid conflicts. The ideal
process clearly uses no energy and no time, i.e. is at the
origin of the GR/EU chart.

Gil Regev said that in the 1950’s, energy and
information were seen to be different – an autopilot
uses very little energy but can control a huge ship or
plane. Dick Schaap said that the GR/EU chart makes
visible what is happening in terms of resources applied
and results obtained; you might have reasons (not
visible on the chart) for going for goals quickly but at
higher energy cost. Ilia Bider said that some goals
have higher value, e.g. hitting the market first may be
business-critical as Ian Alexander said was the case
for developing new Jet Engines for specific aircraft
types. And values might change; Ann Lindsay said the
same was true in production – you might rush to meet a

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 9

critical order for chocolates even if you wasted
materials and labour. Value would have to be a third
axis but Dick Schaap had not worked that out.

Ip-Shing Fan (Cranfield University) spoke about a
Process Model for Diverse Stakeholder Goals. BPM
projects were limited in various ways, but all aimed to
abstract the organization of activities in an
organization. Goals were driven by strategy, eg.
quality, lead time, time to market, delivery reliability,
design flexibility, volume flexibility, cost/price,
innovation, and trustworthiness. These are extremely
diverse competitive factors. Organizations differ in the
factors they choose, and in their resulting success. It
would be useful to understand the reasons for these
variations.

Fan suggested that the largest cause of difference is
people; the interaction of people with processes is
complicated. Three perspectives on this are
organization, people, and technology; these might be
useful. But BPM’s assumption that there is one single
canonical process that everyone should follow is
clearly false; so going from an As-Is model to a single
new To-Be model – in classical BP modelling – is a
limiting approach. People naturally desire variability in
their work. Quality manuals indeed deliberately avoid
(mechanism) details, sticking to (vague) business
goals. Workflow is often too prescriptive. Instead, we
need controlled diversity – not chaos but an allowed
range of process variation. Fan is therefore working on
ways of generating diverse models offering a choice of
possible processes. TRIZ, the so-called theory of
inventive problem solving, now available in 2 software
forms (Invention Machine, and The Ideator), is being
explored as a BPM tool. TRIZ was invented by
Genrich Althsuller, a Russian who studied 200,000
patents to identify common features in the invention
process; TRIZ is a huge conceptual system.

Ilia Bider said that half of the answer is in the
question. Fan had put the wrong question by imposing
Workflow; flexibility was needed in understanding the
structure of the goals. Order is more or less fixed;
varying all the orderings would give you too many
answers. Fan said he agreed.

Denise Downs’ talk on Analysis and Design for
Process Support Systems using Goal-Oriented BPM
was presented in her absence. She had argued that you
should define clear goals, vision and values before
creating a comprehensive BP model, and then trace
each activity in the model to the software design
objects that implemented it. Neither the OO approach –
which tended to jump on isolated use cases – nor the
structured approach – which tended to identify
processes and dataflows without looking at sequence
constraints or roles. She therefore creates a process
flow model, which contains 2 kinds of item: triggers
and activities. Triggers can be events or by time; every
process flow starts with a trigger. Activities form a
chain and identify the precise sequence required; i.e.
the process model defines a canonical “best practice”
process which is used by staff for guidance. This is

clearly a simple case (unlike those raised by earlier
speakers) but a perfectly valid one.

Steve Battle (HP Labs, Bristol) and Deb Cooper
(Contact24 ltd) spoke on Goal-Oriented Service
Management. We’ve done what the client asked us to
do: why aren’t they happy? We got really frustrated as
it happened again and again. So we devised a practical
approach for our outsourced situation. We want to be
perceived as experts, and to learn from every
implementation before we face our Board. So Lessons
Learnt are important.

We worked with an organization providing outsourced
call centre CRM support for the financial services
industry. There is voice, as well as manual processes,
and web interaction. There’s been a big change since
Sept. 11th – cutting costs, but also giving better quality
not just quantity. In the USA they just have quantity;
the UK public is far more demanding and want their
questions answered right first time. And clients tell us
what they want, not what they need: 2 different things.

So, we first identify BPs and participants with use
cases. E.g. queries arrive and are handled by advisors,
who forward more specific queries to a well-trained
bureau operator, and complex queries to a dedicated
advisor. This analysis leads to the design of a massive
knowledge base for each class of actor. Traceability is
established between client corporate aims, more
specific objectives, and then to detailed goals.
However the goals depend on the BP model – if it
changes, goals have to be revised. New goals can be
handled temporarily in contingency by simple (often
manual) procedures. If a client asks for anything that
doesn’t seem to trace back to a strategic goal, we can
ask them why they want it, and maybe thus simplify
the process model.

Ian Alexander remarked that it had been said ‘all good
patterns are obvious’. Ilia Bider said there was often
too much abstraction in the wrong place (academically)
but too little in other places (industrially). Ian replied
that we all needed to connect research with practice
and teaching.

Ilia Bider led the discussion by asking us to work
towards a common notion of Goal for BPM. Vision
was too unquantifiable to be included. Objectives
might also be unmeasurable but were important. Goals
had to be measurable. But strategic objectives could
said Gil Regev be qualitatively assessed. Ilia Bider
asked us to seek the kinds of measures that goals
should have. E.g. in a homeostatic system a key goal is
to maintain a constant (or constantly growing) market
share, etc. Goals could thus be fixed or dynamic (i.e.
having a constant rate of change) with respect to an
environment. Staying still was like walking up the
down escalator: there was always ‘friction’ so you had
to take action to stay still. To adapt to other
environments you’d have to change the BP model.

Ilia said that (in a homeostatic or control system)
having a goal means the current state is not the goal

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 10

state, and a corrective (negative feedback) action
should be applied. Ian replied that even when the
current state was the desired one, the goal (Actual
Value = Desired Value, A = d) remained, but no
corrective action was momentarily needed. To follow a
trajectory, you had a differential, i.e. dA/dt = D. This
assumed a continuous environment, but (said Ip-Shing)
the environment could suddenly jump.

Goals could be nested, just as processes (and systems)
can. Goals change human behaviour by setting
measures on our behaviour (said Ip-Shing). These
concepts can be applied at all levels in an organization,
raising issues of the different languages in the
boardroom, in line management, in IT consultancy, and
so on.

Every procedure must be measurable against a
(functional) goal.

Other goals may not correspond to individual
procedures but must be associated with a measure for
the organization to follow, e.g. to conduct business
ethically, to run the railway safely, etc.

Specification of Distributed Systems
Security Policies Dr Emil Lupu (Imperial College)

Part of the IEE Summer School on Distributed Systems

September 5th 2002.

Issues are still at the border of research and product
development: from role-based access control, trust,
policy-based authorisation, and conflicts/exceptions.
At Imperial the focus is quite practical.

By trust, some people just mean reliability or
dependability; others something quite different.

Access control needs to work in very large complex
networks, with many machines hosting services. There
are millions of objects, tens of thousands of users and
many platforms and services. Permissions must
therefore be very fine-grained compared to the network
– who can invoke what service on what platform; able
to change rapidly; and able to cope with heterogeneity.
That’s bad enough: but what about laptops, web-
enabled cellphones, handheld devices and so on?
Visitor policies are needed to ensure security.

The solution is in having defined groups and roles,
middleware in CORBA or Java that is now much
improved; security monitors, and a policy that spells
out what to do when something that looks like an
intrusion happens.

Role-Based Access Control (RBAC) means tying
permissions to roles instead of individual users. You
define roles – like groups, and you can then
dynamically assign users to roles without having to
redefine those roles each time. The indirection (user –
role – permission) affords more flexibility. . Many
tools such as Win 2000, Oracle, Tivoli, Sybase all
claim to be role-based.

You can also have permissions from junior roles
inherited by senior roles through tools that support role
hierarchies – but this is a more dubious advantage,
argued Lupu: was it true that professors should inherit
permissions from lecturers who inherit from research
students who inherit the permissions of a generalized
department member? It might be right or wrong.
Should the prof be able to read all the private files of
all research students? The crude rule – senior roles
aggregate all access rights of junior roles – needs to be
modified by defining private roles (or projects).
Hierarchy reduces the number of permissions as
claimed, but can increase the number of roles needed.
It also raises questions of complexity and efficiency if
you have to go around a network to find roles to check
permissions for a specific user. The model doesn’t
provide a language for specifying policy, and it is
basically ad-hoc – every tool has a different approach.

Trust policies started with IBMs Trust Policy
Language (TPL) which was a way of using public-key
certificates over the internet to control access to
resources by user groups; access rights are assigned to
groups. TPL is based on XML syntax. Different
authorities issue certificates and authorise accesses.
Expired certificates have to be revoked. Certificates
are valid for a year or so, creating a sizeable overhead
of administrative complexity: the key problem in
security. The certificate has to name the issuer, subject,
type, version, and links to where the certificate syntax
and other details are defined. TPL itself allows both
positive and negative rules (but you have to be careful
with the latter). E.g. you can define that customers
need an employee of rank greater than 3 to sign their
certificate. Then you can have access rules saying that
customers can browse the catalogue and order goods,
and so on. But the XML rules are verbose (the
customer rule is a page of code!) and unreadable, and
no concept of inheritance.

The Oasis consortium is trying to standardize on a
different use of XML, with a language for specifying
authorization policies (XACML), and a second
language (SAML) for marking up security assertions
(like “Joe Bloggs has been denied access”). This
complies with the idea of separating policy decision-
making from policy enforcement. The enforcement
point may detect a possible security breach, and inform
the decision point which can apply more resources to
evaluate the situation. In a blizzard of three-letter
acronyms starting with P, policies are handled by being
passed around from policy administration to retrieval
to decision to enforcement to information and back.
Obviously the intended target is the web services
market.

There’s a major problem with usability; the stuff is just
as verbose as IBM’s XML, and there are no graphical
or high-level tools yet before diving into the XML.
Pity the poor ex-sergeant-major security officer who
has to specify and enforce security! You can clearly
create your own higher-level language specification in
a database tool and write your own XML exporter; but

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 11

only the XML format is currently defined – clearing up
the current ad-hoc muddle. But Tool support and
friendlier notation are clearly needed.

Policy-based authorisation has evolved over a
decade. You basically organize a hierarchy of objects
(such as computers) into a Domain, and apply a
common policy to them all. Again, you can change
domain membership without editing the policy – it’s
just like moving users into or out of a role group.
Hierarchy enables you to scale up the application of a
policy.

There are 2 basic types of policy: authorisation policies
(what you can and can’t do) and obligation policies
(what you have to do when certain events occur).
Negative authorisation is useful especially for
revocation of access rights, and can also directly
represent organisational prohibitions which are often
far more common than permissions. Obligations are
typically interpreted by the machine subjects
themselves – e.g. when 3 login failures happen, you
should disable the affected userID and notify the
administrator. Other more specialised types of policy
include ‘filtering’ (weed out confidential parameters)
and ‘refrain’ (hold back from supplying information).

Conflicts can arise when 2 or more policies apply, e.g.
when an object is in multiple domains; and because
different managers can specify policies, e.g. security
and performance policies for the same network. You
obviously need a way of detecting conflicts and
handling exceptions economically; you don’t want to
edit a policy every time you find an exception (e.g.
students can’t reboot servers; but student Smith may do
so). A default is that negative rules always override
positive ones (so hard luck on Smith). Or you can
specify Priorities – but it’s hard to stay consistent. A
general concept is to evaluate a “distance” between a
policy and the object it applies to; near overrides far.
Or you can try more recent overrides older. Or more
specific (exception) overrides more general (basic rule)
– but this doesn’t always work. But all of these
(modality) conflicts are alas by far the easier type. The
hard cases are semantic conflicts. For instance, self-
management: a manager may not authorise his own
expenses; separation of duties: one person may not
initiate and authorize payments. Such meta-policies are
very troublesome. You can try to describe them in
languages like Prolog or OCL. There is a clear
argument for having policies expressed in a declarative
language – if all your security policies are encoded in
Visual Basic, you can’t do much to look for conflicts,
gaps, or errors.

Future directions include refinement of trust-based
policies; dynamic adaptation; mobile architectures (and
pervasive computing, with wearable and invisible
devices); and the reverse engineering of existing
implementations.

Lupu was cogent and lucid throughout. The group (a
dozen) seemed to have been happy with the other
sessions they’d attended. There were some jokes about

speakers bringing their usual 200 slides for a single
session; every aspect of distributed systems seems to
be complicated. The atmosphere was studious; the
audience mostly male and casually-dressed. Everyone
listened closely rather than looking at the neatly-
printed sets of slides. There were one or two technical
questions at the end of each topic; questions were
answered cogently and honestly, pointing up the key
issues. It seemed that the Summer School was hitting
the spot again.

IEEE Joint International Requirements
Engineering Conference (ICRE’02 and
RE’02)

September 9 - 13 2002, Essen, Germany.

It was a busy, packed, exciting week, full of
stimulating conversation – whether in workshops, in
little groups in tutorials, over coffee and meals,
walking around the site, or sitting in the sunshine by
the water lily pond with the musical splashing of the
fountains. Sometimes the question-and-answer
dialogue at the end of a paper rose to the same level, as
both audience and presenter took wings and soared into
the transcendent clarity of original thought.

I went to a 2-day workshop (REFSQ), visited a tutorial
(Suzanne Robertson and Neil Maiden’s on Creative
Thinking; I had to pose as the boss of a bicycle courier
firm, complete with yellow reflective sash, but that’s
another story), absorbed all three keynote talks, heard
11 papers, gave one myself, and looked at several
requirements tools. What, ultimately did all that effort
buy me? Perhaps it’s impossible or too early to say:
ideas spring (as Tolkien said) from the well-watered
soil and the seed-germ of experience in their own time.

There were inspiring moments:

• Jack Carroll (Virginia Tech) gave a ‘global’
overview in his Keynote talk of what it means to
think with scenarios, based on a lifetime’s
experience and research.

• Ben Kovitz in his Industrial Talk drew our
attention to the crucial need to accept and address
ambiguity in requirements, rather than trying to
sweep it aside.

• Daniella Damian (Sydney) presented the
shattering results of her Grounded Theory
observations of attempts to engineer requirements
across a continental divide – with people in
America and Australia failing to engage with
problems from one month to the next, or to trust
each other enough to get the job done efficiently,
despite the most elaborate high-bandwidth
videoconferencing links.

• Martin Feather (JPL) showed that given a tool to
evaluate ‘cost’ (e.g. mass, or power consumption)
and another to explore different trade-off
decisions, you could come up with a

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 12

demonstrably near-optimal project ‘plan’ (the
best combination of features), chosen from many
thousands of simulation runs.

• Hermann Kaindl presented his freeware RETH
tool, named for 'Requirements Engineering
Through Hypertext', showing just how much can
be achieved by one man and a compiler
nowadays, and introducing some excellent ideas
on traceability to a wider audience into the
bargain. (He featured in IEEE Software,
May/June 2002, pp 70-77, if you didn't see it
already.)

• People who managed to get to Sophie Dusire's
(Thales) talk about Applying Theory to Reality in
Requirements Engineering said that not only was
the talk interesting and practical, but that there
was an excellent discussion afterwards.

• Matthias Weber and Joachim Weisbrod
(DaimlerChrysler) deservedly won a prize for
their fine and disarmingly honest paper on
Requirements Engineering in Automotive
Development - Experiences and Challenges. It
gave an insight not only into what was working
well but what needed to be addressed to bring
about change in long-established industrial
practice.

But I also had the feeling that some of the work
presented didn’t add that much to the world’s stock of
RE knowledge. Some speakers told us what everyone
already knew; others described additions to well-
defined paradigms. Still others seemed to be doing
something new in modelling or metrics or verification,
but it wasn’t easy to see how people would apply it in
industry. Researchers need to be encouraged to
investigate risky and difficult issues, or they’ll stick to
safely incremental topics.

There are many things that practitioners would like to
know in RE. What evidence is there, for instance, for
the relative suitability of different approaches in
different situations? Can, indeed, we find ways to get
hard quantitative evidence when no two projects are
alike, and when the obvious experimental guinea pigs
are inexperienced students? How should we select
analysis methods for different types of problem? How
should complex choices be presented to stakeholders?
How can we be sure a specification is complete? Can
we find effective techniques for distributed projects?
The social and political dimensions are barely explored
(pace Checkland) but hugely important.

I have a hunch we’re actually just at the beginning of a
scientific (theory-based) practice of requirements, or
dare I say it, of making requirements practice into a
genuine (heuristic-based) engineering discipline. We
really do have much more useful knowledge than we
did ten years ago; it is as yet very poorly disseminated
in industry, despite the obviously fine work being
reported on by pioneering industrialists like Kovitz,
Dusire and Weisbrod, and remarkably little taught in
university, again with honourable exceptions. We need

to be bold, practical, outward-facing and willing to try
new things – which means, willing to get things wrong.

RE'02 was a great place to meet colleagues, to argue, to
explore, to start new lines of inquiry, to hear the best
and greatest. Let's make it even better next year. Long
live RE!

 1st International Workshop on Traceability

28 September 2002, Heriot-Watt University, Riccarton,
Edinburgh

Andrea Zisman welcomed us to this first workshop,
thanking the program committee for their hard work
and Telelogic for its sponsorship.

Daniel Gross (University of Toronto) talked about
designing systems (using any chosen notation) using
‘aspects’ to focus on quality requirements (usually
global NFRs, eg performance, reusability, reliability,
cost): how they are traded-off and refined during
design.

In the example, he wrote a frame engine (querying,
storing, and retrieving frames) language, Telos, in
Prolog, to form a knowledge base. The rest of the work
was at the meta-level, reasoning about the design
choices to be made.

An Aspect is a new abstraction mechanism that
captures design decisions that affect many modules.
E.g. the choice of data passsing mechanism affects
performance and reliability, so it is an aspect.

Both aspects and code modules are composed during
implementation, affecting qualities in various ways.
Traces can be used to link NFRs to design decisions
and then on to system artefacts; the purpose, of course,
is to orient system design to the various system goals,
including NFRs – which people often more or less
ignore when tracing back to functional requirements.

Intentional Agents can represent design goals; in the I*
notation, that’s a big circle, which you decompose into
tasks and goals with interactions such as ‘helps’ or
‘hurts’, effectively describing the reasoning underlying
an Aspect of the system (like the data passing
mechanism) according to what the Aspect ‘wants to
do’ – in that anthropomorphic sense it is Intentional.
The Agents are linked to the various Aspects that they
generate (i.e. want). That stuff argues out the design
rationale; it is then linked to the relevant design
elements (code modules), by what I’d call a
justification trace but which they call a reference.

Elena Perez wondered how this might scale up. Gross
thought the representation was very compact; also you
could have a folding editor that showed relevant detail
and hid the rest.

Jeremy Dick and Ian Alexander said that one design
choice often forced another. Gross said that you could
use dependency links between tasks that the designers

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 13

had to accomplish, to represent any kind of reasoning
about the design.

Antje von Knethen (Fraunhofer Institute) spoke about
automatic change support based on a trace model, to
enable proper impact analysis before going for a
possibly costly change. Documentation Entities talked
about goals or requirements; Logical Entities spoke
about the corresponding control tasks and
environmental variables managed by those tasks.
Actors could be linked to both. The relationships
between entities include representation, dependency,
and refinement. Then you can define constraints, e.g. in
an embedded control system, each control task must
‘influence’ exactly one environmental item (like
temperature). Obviously this allows you to carry out
helpful validation checks on the installed traceability.
A controlled experiment with graduate students
showed that guidelines for maintainers using this
approach were beneficial for impact analysis. The
approach was therefore implemented by extending the
commercial StP/UML tool. This was easy, and ensures
the approach can scale, but the tool was unable to
automate the making of changes or support the whole
of the process – e.g. it didn’t support use case
descriptions (and the use cases appeared as rectangles
with no actor symbols!).

Darijus Strašunkas (Norwegian UST, Trondheim)
spoke about traceability in collaborative systems
development from a lifecycle perspective. Its purpose
was to ensure completeness, to propagate changes, and
to facilitate mutual understanding and enable meanings
to be shared (‘semantic interoperability’!).

The essential difficulties included the distance between
CP Snow’s two worlds – human usage/natural
language, vs technical usage/formal methods. An
environment was needed to support collaborative
development.

Jeremy Dick (Telelogic) spoke about Rich
Traceability. He said that we as a community were
changing the world, at least because Traceability isn’t
in any dictionary. We’re trying to get people to use it
in real projects, not just in software but in systems of
all kinds, such as the Joint Strike Fighter – probably
the largest system development in the world.

What we say to our customers is that ‘information
traceability is understanding how high-level objectives
are transformed into low-level goals’, i.e. we abstract
away completely from talk of links. And we tell them
‘the benefits include greater confidence that
requirements are being met’ and that it gives you
‘ability to manage change’ and ‘improve collaboration
between customers and suppliers’. This is important –
we break down that barrier where people used to post a
document to their customer, full of requirements: now
the customer helps to write them. And finally it helps
to ‘track progress and status’ and ‘to match cost
against benefit’.

Rich traceability deals with and/or goal trees, to
capture the ‘How do you know that this satisfies that

requirement?’ of a problem. You can do the same for a
validation strategy. Goal trees are not new – they’re
used in van Lamsweerde’s KAOS, in safety case
notations like Tim Kelly’s GSN, in Reveal’s
satisfaction arguments, and so on.

Plain traceability just has N:M satisfies links,
permitting impact analysis – if I change that, I better
revisit those. But the bundle of links carries very little
information about the satisfaction argument. Adding
Assumptions helps; so does making explicit that a node
is supported by ANDed or ORed requirements
(visually, with ‘&’ and ‘or’ labels). Adding
Arguments and ‘xor’ gives still more expressive
power. These are implemented in DOORS – a simple
way is to use attributes, and a more complete way is to
use ‘establishes’ (1:1) and ‘contributes to’ (N:M)
relationships, which can be displayed in a table-like
view showing requirements, and/or, satisfaction, and
contributing requirements alongside each other. An
explorer tool allows arguments to be navigated and
examined. This approach captures rationale, exposes it
to peer review (which is critical for quality) and gives
greater confidence in meeting objectives. Most new
DOORS customers in the UK will use rich traceability
at least in a simplified way.

Ian Alexander (Scenario Plus) spoke about moving
towards automatic traceability in industrial practice.
He described the use of three simple tools (Scenario
Plus add-ons for DOORS) in a train control box
project: a use case linker, a dictionary term linker, and
an exporter to create a hypertext from a use case
model.

The effect of these is to speed and simplify the creation
of requirements and to build a shared understanding
(via the scenarios, and the agreed definition of
technical terms) of the system approach. He illustrated
how these worked in practice, arguing that having a set
of documented stories and terms was a step-change
improvement in industry.

The hard remaining task is to find ways of automating
the linking of stories to requirements (argued Jeremy
Dick): linking scenarios to tests is simple semi-
automatically (with Scenario Plus) as testers can select
and compose chunks of test cases very quickly using
the existing tools. In a well-ordered project starting
from scenarios, it is possible to copy-and-link to
initialize the functional requirements with 1:1 links; if
as in the railway project, the requirements already exist
(in part), manual linking is today the only possibility.

Steve Riddle (University of Newcastle) spoke about
enabling traceability. Current tools like DOORS and
RTM could help but industry was (as previous speakers
had mentioned) reluctant to move from paper-based
methods. Things have moved on little in the decade
since Olly Gotel and Anthony Finkelstein

‘identified the crux of the traceability problem as “the
inability to locate and access the sources of
requirements and [pre-requirements specification]
work”; they contended that this was a major

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 14

contributor to the other classic (and still current)
issues: out-of-date requirements; slow realisation of
change; and poor reuse.’

This is indeed ‘dispiriting’, but it shows that
Traceability workshops have something important to
achieve. Semi-automation is perhaps what we need –
e.g. identifying what needs to be updated, discovering
‘implicit’ traces buried in documents, and so on, much
as Jeremy Dick and Ian Alexander had suggested.

Research needs to focus on technology transfer, to be
pragmatic, and to address the issues by staying in touch
with industrial sponsors, developing prototype tools to
be evaluated by systems engineers.

Stewart Higgins (Philips) said that this presented
traceability as a tools problem, but in much of industry
the issue was the process in which such tools might be
used; it was about people and what they did. Tools
alone would always fail.

Patricio Letelier (University of Valencia) spoke on a
framework for traceability in UML-based projects.
Each project needs its own traceability approach, with
no consensus on what information to collect, or what it
means. Current tools focus on making a traceability
graph between pieces of text. Integration between
requirements and software tools isn’t ideal; e.g. tools
such as ReqPro don’t offer a framework for traceability
– all there is, is support for use cases and documents.

However a generalized framework was possible, e.g.
stakeholder isResponsibleFor artefact; feature tracesTo
use case; component isVerifiedBy test case.
Generalized artefacts can be very few: traceable
specification, model, and test specification. These can
then be applied by specialization to a particular project,
e.g. a RUP project can have use case model, class
model, and so on as instances of model. Work is now
in progress to build a module supporting the
configuration of traceability for Rational Rose.
Obviously this is aimed at software projects.

Alexander Egyed (Teknowledge) spoke on reasoning
about trace dependencies in a multi-dimensional space.
“I see traces as the simplest and most trivial artefacts
of all, mere arrows, things that point at other things.”

(Hmm, but what about relationships between
requirements? Could be dependency, or constraint, or
conflict, etc: would these work transitively, wondered
Andrea Zisman and others of us. If transitivity didn’t
hold, the approach wouldn’t work. In any case it only
applied to software because everything related to the
code.)

There are lots of manual tools and techniques: it’s
essentially a manual process, and you have to worry
about properties like precision, completeness, and
being systematic. We’d like it to be automatic! Hardly
anybody really puts in traceability.

Traces are transitive and bidirectional, and therefore
we can deduce commonality, i.e. if A and B each trace
to C, A and B trace to each other. And if A and B trace

to Ca and Cb, A and B trace to each other if Ca and Cb
overlap.

For instance, if you make a change to requirement A, it
will affect Code C and (therefore) may well have an
impact on the ability of requirement B to get what it
wants. With a trace analyzer, you can follow through
any depth of tracing to identify all the trace
dependencies between requirements no matter how
distant the relationship.

If you have test scenarios, for instance, you can use a
trace analyzer to find out all the classes and methods
(and even lines of code) it uses and therefore verifies,
and then automatically identify trace dependencies
between code and model elements (assuming you know
the relationship between scenarios and models). You
can reason about the connections – via the overlaps in
the code! – between dataflows, classes, and use cases,
which constitute different dimensions of the problem.

We wanted, said Egyed, certainty about correctness
and complete relationships between models and code.
We get some way towards this. It is a simple approach
that works, provided only that model elements are
clearly distinct (which isn’t always so).

Elena Perez-Mi•ana (Philips Laboratories) spoke
about issues on the composability of requirements
specifications for a family of products (TVs) in
consumer electronics. These are still managed today
through documents. There are incompatible standards
for TVs in the USA, Europe and Asia. The
configuration of specifications is hard to manage as
there is a matrix of applicability against competences.
Currently, researchers all use several sorts of model to
describe product family requirements, and we concur.
A database approach allows different views of a
common set of requirements. A Domain Object Model
(a class diagram) defines shared concepts with agreed
names. A Use Case model defines the functional
requirements for the Product Family. Use Cases are
much more stable than the User Interface and other
details of individual products.

We think use cases (she said) are the most effective
way of defining product requirements, but in
abstracting up to family level we still want to be able
to see individual product details; and to see points of
variation between products – both of individual
features and of interactions between features.

We want to identify the right amount of natural
language for product family specifications, as we think
that informality leads to more inconsistencies, but
readability is essential. We need a semi-formal
language to allow us to express how products vary (as
Mike Mannion has described). And we need to express
temporal constraints, whether through UML activity
diagrams or a semi-formal language.

ab

The meeting ended with plenty of time for discussion.
George Spanoudakis introduced the session with a
‘biassed’ list of open issues:

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 15

• Types of relations required – project/enterprise
specific? Domain specific? With generic
ontology? (e.g. impact traces (satisfies, verifies)
vs others (justifies, is defined by)); Across all
artefacts?

• Ways to automate the generation of relations:
feasible? Ambiguity? Correctness &
completeness – what can we tolerate? Quality
assurance mechanisms? Can you create traces
without automation, and can you trust them with
it?

• Process issues: changes needed in human
management? enforced while you develop
specifications? Granularity of traceability? Or a
posteriori, given the artefacts already?
Traceability to product family specifications?

• Tool issues: interoperability and heterogeneity (in
a distributed environment)?

We argued about much of all this. We didn’t like the
Gotel/Finkelstein Pre/Post-traceability distinction – it’s
all the same stuff, we felt.

Jeremy Dick suggested that all true traceability
relationships are many-to-many.

Installation of traces is far more difficult on brown-
field, legacy system projects; and automation would be
valuable, if only it generated trustably correct links.

Andrea Zisman defined Recall as # of detected links / #
of possible links; whereas Precision was # of correctly
detected links / # of detected links. A precision of 80%
is, we felt, like an Internet translation of a foreign
document: 20% incorrect can be really distracting,
though we may be able to correct wrong links; on the
other hand, missing links are a real problem.

Traceability is vital for change management and
impact analysis; but it is not sufficient for this, as it
says nothing about new requirements. And a simple
‘suspect links’ flag can indicate only that an item
might need to be changed; not that anything that
matters has occurred. Wim Dekker suggested that a
traceability link is one that cannot be automated!
Alexander Egyed said that if you wanted traces from
models to be accurate, then you had to have a fine
grain. Coarse links would be inaccurate. Stewart
Higgins said that inaccurate traces would lead to
expense as they’d need to be checked by hand.
Alexander Egyed said that existing automated methods
could do good and useful work already, saving money.

We concluded that Ariadne, who gave the hero
Theseus a reel of thread to find his way back from the
Minotaur’s labyrinth, was the founder of Traceability.

RE-Papers

Requirements Engineering Research
Prototypes – A short survey of tools

Frank Houdek
DaimlerChrysler AG

Presented at ICRE’02/RE’02

Research prototypes are an essential element of
ongoing research activities as they demonstrate the
applicability of complex and innovative approaches. In
one session of this year’s International Requirements
Engineering Conference (RE 2002) six research
prototypes have been presented and discussed.

The RETH tool (Requirements Engineering through
Hypertext) by Herman Kaindl is designed to support
requirements engineers while writing specification
documents. These documents have to adhere an
underlying structure that has similarities to use case
descriptions. There are two ways of using the tool: (1)
the tool can just be used as an editor where information
is edited in any area the author wants to modify or (2)
the author uses the build-in process assistant who
guides the author step by step. The main feature of the
tool, however, is tracing support. Using implicit trace
information given by just-the-same-word the tool
interferes traces. Here, the tool can distinguish between
general terms (e.g. bank) and more specialized terms

(e.g. bank account) while trying to trace on the most
specialized level.

Unfortunately, the tool isn’t freely available.

XlinkIt, presented by Anthony Finkelstein, is a
commercial tool (www.xlinkit.com) that bases on
research performed by University College London. Its
main goal is to support consistency between
heterogeneous information sources. This is achieved by
integrity checks and report capabilities. Using XML,
the user can specify consistency rules (first order logic)
that can check both data and link. Although the tool is
not primarily intended for specification documents, it
can be applied to them as well. Thus checks like “does
every requirements have at least one test case” or “does
every use case description mention at least one actor”
can be checked.

The SeeMe editor by Kai-Uwe Loser is a modelling
and presentation tool. It is intended to model socio-
technical systems (i.e. processes which involve both
technical and human-based activities and their
interaction). A major goal of the tool is the ability to
express uncertainty. If, for instance, a collection of
activities is assumed to be incomplete, this is expressed
by means of special symbols. Information can also be
presented in various levels of detail. Every element is
equipped with a “mouse-hole” symbol. By clicking on
this symbol, information that is part of the element can
be shown or hidden. Thus even complex processes can

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 16

be presented easily. There is no “dive-in” mechanism,
i.e. by clicking on an element no new window pops up.
Instead the sub-elements of the current element are
show inside.

Avoiding the “dive-in” concept is also the driver for
the Adora tool presented by Christian Seybold. The
tool deals with the observation that dive-in
mechanisms intensify the lost-in-detail problem by
hiding the context the currently presented information
is embedded in. Thus the idea is to present all
information in one window. If a user wants to see
what’s inside an element, the details are presented on
demand. At the first glance such a technique would
result in very overloaded and large drawings. To avoid
this problem, the Adora tool uses an idea similar to the
fisheye lens concept. Information, which has a greater
distance to the currently focused elements, is drawn
smaller. So, the context is still visible. To avoid
distortion, a linear transformation is used which
maintains the relative position of the elements among
each other. Currently, the tool uses the language
Adora, but other hierarchical notations can be
implemented easily.

The NIBA workflow tool, presented by Christian
Kop, implements a challenging task, the transition of
German natural language text to UML class diagrams
models. In German, the average complexity of
“simple” sentences is higher than, for instance, in
English. This complicates the task of parsing arbitrary
input text. The tool provides a front-end that provides
support to the various steps from a natural language
specification towards an UML class diagram. Under
the front-end several proprietary tools are combined,
e.g. an editor, a text analyser, and Rational Rose to
display the final UML diagram.

The REM (REquirements Management) tool by
Amador Durán Toro is a freely available general-
purpose requirements management tool. It was mainly
build to support education, as commercial tools are
quite expensive (even when considering the special
conditions for universities). It provides four
information areas. One for user requirements, one for
developer (or system) requirements, one for conflicts,
and one for change requests. The windows based tool
provides a neat front-end. It is highly configurable as it
uses XML to store data and style-sheets for display and
export. Thus, individual needs with respect to optical
appearance (views) can easily be implemented. The
tool offers many capabilities a requirements
management tool should offer, like automatic history.
The tool is freely available at klendathu.lsi.us.es/REM/.

Altogether, the RE02 research demo session provided
an in-depth insight in ongoing research activities from
a tool perspective. My personal favourites amongst the
presented tools are REM (as is provides – mainly for
educational purposes – a quite powerful tool with some
interesting features, e.g. using XML style-sheets for
display and export) and NIBA (as it deals with a really
ambitious task, i.e. understanding and transformation

of natural language text). However, all other tools
showed some interesting concepts and features as well.

Requirements Tracking: A Streamlined
Approach

James E Archer
Titan Systems

Introduction

It is both a truism and a cliché that software systems
should be based on user requirements. Nonetheless,
formal requirements tracking methods have not lived
up to their promises and those who advocate "agile"
methods have largely abandoned requirements tracking
claiming they are burdensome and counter productive.
What went wrong?

The problem seems to lie in the diverse nature of
software requirements. What is needed is a way to
categorize requirements and handle each according to
its inherent properties.

The primary goals of the Streamlined Approach are to
document requirements in ways that are practical,
flexible, maintainable, trackable, traceable, and support
incremental delivery of software products
(Deliverables). The method must be usable on real
projects with time and budget constraints. It must
scale both up and down. Note: Some of the Items that
satisfy these meta-requirements have been annotated
below (in parentheses).

The Requirement Approach

The Streamlined Approach is a midrange approach that
rejects both a high degree of formality (such as
requirements matrices) and informal techniques (such
as "user stories"). It is a database centric rather than a
document centric approach because only a database
approach can provide the desired degree of
trackability. Furthermore, the classification of
requirements requires a fine-grained approach. The
basic requirement unit is the requirement statement,
not the document or the use case. Typically,
requirements statements are from one to four sentences
long.

Requirement Domains

Most requirement methods distinguish between
Business Requirements and Software Requirements
and this one is no exception. Business Requirements
express the reason for writing the software and may of
any level of abstraction depending on the project .This
provides the flexibility to handle projects regardless of
their scope and nature. Software requirements are
attached to one of more software Deliverables, which
they specify.

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 17

Requirements Hierarchies

Business Requirement Hierarchy

In order to assure the method will scale both up and
down, two hierarchies are defined, one for Business
Requirements and one for Software Requirements.
These are tree structures with the entire system
represented at the root node and the desired level of
decomposition below. The Business Requirements
Hierarchy and Software Requirements Hierarchy
provide the appropriate levels of abstraction for the
corresponding requirement domain.

Similarly there are Requirement Hierarchies for both
Typed Business Requirements and Typed Software
Requirements. Typed requirements are defined below.

Below each node of the Business Hierarchy are two
more levels: Business Functions and the Business
Requirements themselves.

A simple example should clarify this:

• Root: Cadastral Automated Request System
(CARS)

• Node: Phase 1
• Function: Repository

• Requirement: The system shall provide a
central repository for Survey Request
data.

• …
• Function: Data Entry

• Requirement: The system shall allow
entry of data from multiple locations.

• …
• Function: Security

• Requirement: Authorized reviewers will
review all data before it is entered into
the central repository.

• …
• Node: …

Software Requirement Hierarchy

The Software Requirements Hierarchy has the same
general structure as the Business Requirements
Hierarchy with the Business Function replaced by the
Software Deliverable. The Software Hierarchy is
usually deeper and requirements far more numerous
then the Business Hierarchy. A truncated example:

• Root: Cadastral Automated Request System
• Node: Phase 1

• Deliverable: Monthly Agency Report
• Software Requirement: The report will

list the number of Surveys last month
broken down by Agency.

Requirement Linkages and Tracing

The rule for requirement tracing is simple: Each
Concrete Software requirement (defined below) must
be linked to a single Business requirement (called

Concrete) which it satisfies. In other words, there is a
one to many relationship between Concrete Business
Requirements and Concrete Software Requirements.
No attempt is made to use a many to many matrix
approach to requirements tracing. In the case that
more than one Business requirements applies, one is
chosen at the discretion of the analyst. It is sufficient
to know that a Software requirement has a justification.
This simplifies the model and enhances
maintainability.

Requirement Types

The four basic requirements types are Concrete,
Indeterminate, Abstract, and Typed.

Software Requirement Types

The key concept of the Streamlined Approach is that of
the Concrete Software Requirement. The two primary
characteristics are:

• The requirement is linked to a single Software
Deliverable which it specifies.

• There exists a well defined completion criterion
for determining when the Deliverable satisfies the
requirement.

Secondary characteristic are links to:

• A (Concrete) Business Requirement (Traceable)
• A task in the schedule (Trackable)
• A Completion Status (Approved, Active, Tested,

Completed, etc.) (Trackable)
• A Software Build (incremental delivery)

Note that if the primary characteristics are satisfied, the
secondary ones can always be satisfied.

If a Software requirement satisfies the first primary
characteristic but not the second, it is called
Indeterminate.

If a Software requirement is not linked to a Software
Deliverable but applies to every Software Deliverable
below a node in the Software Hierarchy, it is called
Abstract.

Finally, if a requirement is relevant to some aspect of
the Software (called it’s Type) but does not meet any of
the above criteria, it is called Typed.

Business Requirement Types

A Business Requirement is called Concrete if it is
linked to a Concrete Software Requirement which
satisfies it.

A Business Requirement is called Abstract if it applies
to all Business Functions below a node in the Business
Hierarchy.

Finally, a Typed Business Requirement parallels the
definition of a Typed Software Requirement.

Typed Requirements

Requirements should always be related to the non-
typed hierarchies whenever possible, But Typed

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 18

requirements are important because they allow
freedom in grouping requirements that do not
otherwise fit. When using typed requirements, it is
often useful to extend the notion of a requirement to
any aspect of interest (e.g. a list of users). This allows
the system to be used as a general-purpose repository
for system information (practical).

Conclusion

Many other issues could be addressed but are beyond
the scope of this paper. These include:

• Attaching documents to requirements for
schedules, use cases, graphics, etc (flexible)

• Reporting functions (trackable)
• Data base model
• Prototype system developed in MS Access
• Using the method to support incremental

prototyping (flexible)

Examples

Domain Type Node Function /
Deliverable /
Type

Requirement

Business Concrete CARS/Phase1 Repository The system shall provide a central repository for CARS
data.

Business Abstract CARS/Phase1 --- The Phase 1 release will be packaged to keep all Indian
Request data off local machines.

Business Typed CARS Field Offices Coos Bay Oregon

Software Concrete CARS/Phase 1 Field Office
Report

The reports shall list the number of surveys broken out by
Field Office.

Software Indeter-
minate

CARS/Phase 1 Field Office
Report

The report shall make attractive use of color.

Software Abstract CARS/Phase1 --- The phase 1 system will be packaged on diskettes.

Software Typed CARS Project Phases Phase 3 will be Internet enabled.

Requirements, Myths and Magic

Ian Alexander
Independent Consultant

Saying what we want isn’t new; people have wished
for a better life since the dawn of time. Western culture
has thrown up several myths about asking for and
getting what you want; but all of them are rich in
warnings which may be salutary reminders. Let’s just
look at three of them.

One of the Greek Myths of asking and getting is the
sad tale of Pandora, whose name means 'all-giving',
itself a warning. She was created by Zeus when he
discovered that Prometheus had stolen fire from the
gods, and was hence able to do many creative and
destructive things that had until then been divine
privileges. Men 1, Gods 0. Zeus at once ordered
Hephaestos, the smith of the gods, to create the image
of a beautiful maiden, Pandora. Athene dressed the
treacherous thing with lovely clothes. Hermes filled a
vessel to accompany it with all the evils and troubles
the gods could devise. All the mortals and immortals
were astounded by Zeus' ingenious answer to man's
attempt at becoming equal in power to the gods: for
here was the start of the race of women, "that

threatening wile against which men are defenceless"1.
Men 1, Gods 1. (Political Correctness, 0.)

Worse was to come. Prometheus (whose name means
'Provident') warned his brother, Epimetheus
('Heedless'), not to accept any gift from the gods. Zeus
sends Pandora to Epimetheus as a gift, and – true to
form – Epimetheus accepts. Pandora opens the vessel
and all the evils escape and spread throughout the
world, leaving only Hope behind. Gods 2, Men 1.

Pandora's vessel came with a prohibition – it was not to
be opened (just as the fruit of the tree of knowledge in
Genesis was not to be tasted). We’ve all seen projects
that went hell-or-high-water for new technology
without too much cautious work on discovering
requirements or evaluating risks, and all the evils –
delay, cost overrun, blame, slashed functionality,
bugridden software – sprang from Pandora’s box and
could indeed not be put back again. In the myth, one of
the evils – Hope – stays behind in the vessel: it’s the
sting in the tail, as the project manager continues to
produce hopefully optimistic plans that show that all is
well while everybody knows the project is sliding
helplessly to the right, thus guaranteeing continued
anguish while the watching Gods chuckle. One form of
this hope is that a Method or Tool (or even a Famous

1 C. Kerenyi, The Gods of the Greeks, 1951; Thames &
Hudson paperback edition 1974.

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 19

Consultant) can be found to bottle the spirits, to slay
the demons with a magic silver bullet, to ward off the
forces of evil with an amulet. The unscrupulous will
always be on hand to sell Amulet-ware (version 5.1).

Perhaps the best-loved story of specification is
Pygmalion. Who? Pygmalion is ancient Greek for
Dwarf or Pygmy, i.e. the short and ugly fellow who
couldn’t get a girlfriend. Being clever and skilful he
decides to make one instead, and carves a beautiful
woman in the finest white marble from the island of
Paros. At once he falls in love with the statue, and
longs for the gods to take pity on him and breathe life
into it. At last they relent, and she comes to life as the
perfect nymph; the only problem is that she isn’t
particularly keen on the Pygmy himself. Bernard
Shaw’s play (also called Pygmalion) has an English
gentleman breathing elegance and elocution into a
market-girl, with the same result as the Greek myth,
retold (again) as My Fair Lady. Yet another variant on
the theme is Mary Shelley’s Frankenstein, where the
mad inventor succeeds in playing God, only to find that
his long-sought creation becomes a monster. And, yes,
we can all think of projects where the requirements
seemed to be all right at first, but… Pygmalion is the
definitive myth of technology, computing, robotics,
artificial intelligence, genetic engineering and all other
attempts to specify better systems. Your system may
work perfectly – but not deliver the results the users
wanted or expected. The enduring popularity of this
myth says something about public attitudes over the
millennia to technology and technologists.

Finally, and most directly for requirements people,
there is the folktale of the Three Wishes. There are any
number of versions, notably including Saki’s; the genre
is mentioned (but not retold) by Gause & Weinberg2.
(Readers of delicate disposition are advised to skip to
the last paragraph now.)

A poor soul wishes desperately for better things. In a
tavern he overhears a conversation about the
Monkey’s Paw and is drawn unsuspectingly in. A
strangely-dressed man explains that the thing allows
its bearer to obtain whatever he wishes for! Visions of
wealth and luxury and eternal youth float before the
poor man’s eyes. He manages to obtain the amulet and
makes his first Wish – a great treasure of 100 gold
crowns. The very next day a messenger dressed in
royal attire appears at his tiny hovel, announcing that
with deepest regret they have to inform him that his son
has been killed working for the king, who has sent a
present of 100 crowns to mark his feelings.

Horrified, and aghast at what he has done, the poor
rich man wishes his son was alive again. The very next
day, a sister arrives from the hospital and tells the man
that his son is alive, but still terribly mutilated, unable
to help himself, and that if he can care for the patient
he can come and collect his son. He does so, and he

2 Exploring Requirements, Dorset House, 1989.

and his wife work hard every day looking after their
living-dead boy. Things are so heartbreakingly bad
that eventually the sad man wishes silently to himself
that his son were dead again, and at once the boy dies.
The stranger from the tavern who had been talking
about the wonders of the Monkey’s Paw appears from
nowhere, and asks if the man was happy with his Three
Wishes. The man speechlessly returns the hated amulet
to the stranger.

All of these myths agree that it is indeed possible to
specify systems of great power, and to have them built;
but that getting what you really want is another matter
entirely. Have you ever tried to frame your Three
Wishes, if you could have anything you asked for? It
isn’t easy to specify your requirements.

Happy Christmas.

Generation Of Requirements From
Scenarios

Janos Korn
London School of Economics

Background

At the IEE colloquium 'Scenarios through the systems
life cycle', 7the Dec 2000, I presented a brief paper
titled 'Scenarios through linguistic modelling'. Later I
talked to colleagues whom I had met at the colloquium
and consulted some books and journals on the subject
of ‘requirements’. I found that there was a certain lack
of consensus about what was meant by the term
'requirement' in a design context. Also, writers used a
variety of methods like data flow diagrams and
systems dynamics borrowed from systems science for
modelling scenarios. UML diagrams and use cases
although more comprehensive, appeared to follow a
similar line. A great deal of resources seemed to have
gone into software development. These methods have
superficial empirical/theoretical foundation, they have
no basis in existing branches of knowledge, make no
explicit reference to changes of state in time and their
use of ‘properties’ is scarce. There did not seem to be
a clear explanation of how requirements could be
deduced from scenarios. The general opinion appeared
to be that requirements were elicited from a client or a
user.

The problem was then to develop a design method
which would show how to generate requirements with
a methodical representation of scenarios as an integral
part. I have published a number of papers dealing with
representation by means of linguistic modelling (LM)
which does not seem to have the problems briefly
referred to above. The objective of this short and fairly
informal presentation is to summarise the current state
of 'generation of requirements from scenarios'.

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 20

Features of the proposed method

Features of the method of generation of requirements
here introduced, are :

1. Representation of a scenario by LM begins with a
story or a narrative describing some activities which is
then subjected to linguistic analysis to convert
linguistic complexities into a homogeneous language
of one- and two-place, simple sentences which are then
sorted into sentences with energetic and informatic
interactions. These are represented as a diagram which
displays the topology of a scenario from which series
of predicate logic forms can be deduced. These forms
can carry uncertainties associated with behaviour of
human and/or other kinds of components together with
computations as needed. The logic forms represent
sentences which express interactions as skilled power
(with appropriate energy) or influence (carrying
information) through dynamic verbs like ‘to drill’ (a
hole) or ‘to notify’ (the public that….). The diagram
shows explicitly the outcomes of activities in a
scenario as properties when progressions of states in
time terminate.

2. Requirements are seen to originate from properties
which describe the outcomes displayed by an ’initial
representation’ of a scenario. These outcomes are
considered unsatisfactory and are seen to need specific
changes.

3. We introduce the notions of ’dynamic’ and ’stative’
requirements. The former is needed to describe a cause
of a ’changing property’ of a changing object, the latter
are derived from 'quiescent properties’ which are
relevant to change and accompany a changing
property. Getting from one place to another may
require a vehicle, in particular a taxi, but the number of
passengers determines its size.

4. The first dynamic requirement calls for the cause of
a changing property and points to the selection of one
of the 'generalised products' : artifact or
energy/medium for ’physical’ or information/medium
for ’mental’ change of state. Product is needed to
generate the interaction or process to induce the change
of property in a chosen changing object. The second
dynamic requirement calls for the delivery of product
to the changing object by ’interacting objects’ (IO)
operating purposively and points to the selection of
IO. The stative requirements are the consequences of
quiescent properties and point to the realisation of
specific properties which supplement the changing
property.

5. The emerging product and IO are inserted into the
initial representation of a scenario leading to a
'subsequent representation'. This latter appears as a
diagram which can be subjected to the same kind of
analysis as the initial or any other representation of a
scenario by LM. A uniform approach has emerged.

6. Properties of any product are described by
declarative, simple sentences. Thus, their effectiveness

can be worked out in a unified way whether a product
is an artifact, energy or information.

An example

A. Initial representation of a scenario

Scenario : ’George thought that he was badly served in
a restaurant. A decisive man, he immediately picked
up the phone and complained sharply to the manager
who answered the phone, that he had a long wait for
food which felt cold when it finally arrived and its taste
was poor. The manager was a sensitive man who
preferred to see complaints in writing, with a sense of
maintenance of quality of service and food : he
expected a waiting time to be less than 10 min, the
food to be around 25oC and its taste to score at least 7
out of 10. He considered the situation with a view to
contact George’.

After linguistic analysis the scenario is diagrammed in
Fig.1. with outcome ‘manager with consideration of
situation’(ap(5,5)). This may be considered
unsatisfactory by ‘george’. He can set his objective as
‘to complain so as to get compensation from the
manager’.

B. Subsequent representation of a scenario

Having considered the initial representation of a
scenario, the design process is concerned with
development of a subsequent scenario. We use the
scheme in Fig.2. as a guide.

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 21

Quiescent properties are related to : changing property
- CP, changing object - OP, environment - EP,
alternatives – AP. Initial and final
properties/conditions – IC, FC.

Analysis of change (An empirical exercise)

Changing object (a noun) – manager

IC (sentence with a stative verb) – Manager is unaware
of complaint

FC (sentence with a stative verb) – Manager is aware
of complaint with request for compensation

Changing property (sentence with a dynamic verb) –
Manager becomes aware of complaint with request for
compensation

Quiescent properties (sentences with stative verbs) –

CP,1 – complaints go directly to manager
OP,1 – manager is a sensitive man
OP,2 – manager prefers printed communication
OP,3 – manager's expectation for waiting time is to be

less than 10 min
OP,4 – manager's expectation for food is to be around

25oC
OP,5 – manager's expectation for food is to score for

taste at least 7 out of 10
EP3,1 – consumer association encourages customers

to ask for reasonable compensation
OP,6 - manager prefers communication to be private

AP1,1 – manager prefers to see complaints in writing
AP2,1 – george has little confidence in anybody
EP3,2 – communications are carried by post

Scheme for use of changing and quiescent
properties to generate requirements and to choose
product and IO (A theoretical exercise)

1. First dynamic requirement (to indicate cause of
change):
‘Sentence with changing property’- requires –

‘Sentence of cause with (generic initiating object +
dynamic verb as infinitive complement)’

2. Selection of product (to affect choice of product):
‘Sentence of cause with (generic initiating object +
dynamic verb as infinitive complement) AND (AP1,
EP1 and 3)’ – selects – ‘Sentence with (name of
product + dynamic verb as infinitive complement and
its function expressed as adverbial)’

3. Second dynamic requirement (to indicate cause of
delivery):
‘Sentence with (name of product + dynamic verb as
infinitive complement and its function as adverbial)’ -
requires – ‘Sentence describing delivery with (name of
product + qualified, dynamic verb as infinitive
complement’

4. Selection of IO (to affect choice of IO):
‘(Sentence describing delivery with (name of product +
qualified, dynamic verb as infinitive complement)
AND (AP2 and EP2 and 3)’ – selects – ‘Sentence with
(name of IO + qualified, dynamic verb as infinitive
complement)’.

5. Stative requirements (to generate particular
properties of product and IO):
‘Sentences with quiescent properties’ – require –
‘Adverbial and adjectival sentences with (specific
means + stative/dynamic verb as qualified, infinitive
complement)’

Application of the scheme leads to :

Dynamic Requirements

1. 'Manager becomes aware of complaint with request
for compensation' requires 'Means as encoded medium
which is to convey complaint with request for
compensation'

2. 'Means as encoded medium which is to convey
complaint with request for compensation' AND ‘AP1,1
= (Manager preferred to see complaints in writing),
EP3,1 = (Consumer association encourages customers
to ask for reasonable compensation)’ selects 'Letter
(medium : white paper) with information is to be
carried to manager so as to convey the complaint with
request for compensation'

3. 'Letter (medium : white paper) with information is to
be carried to manager so as to convey the complaint
with request for compensation' requires 'Letter
(medium : white paper) with information is to be
carried to manager'

4. 'Letter (medium : white paper) with information is to
be carried to manager' AND ‘AP2,1 = (George has
little confidence in anybody), EP3,2 =
(Communications are carried by post)’ selects 'George
is to deliver letter (medium : white paper) with
information to a post box' (dp(1,12) in Fig.3.)

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 22

Stative requirements

5. Adverbial sentences related to product and IO for
ip(7,8) and ip(1,10) in Fig.3.

CP,1 – 'Complaints go directly to manager' requires
'Letter (medium : white paper) with information is
to be in his intray’

OP,1 – 'Manager is a sensitive man' requires 'Letter
(medium : white paper) with information is to
point out deficiencies in service and food politely'

Adjectival sentences related to product and IO for
dp(1,1), dp(1,10) and dp(1,11) in Fig.3.

OP,2 – 'Manager preferred printed communication'
requires ‘Letter (medium : white paper) with
information is to be put in printer' (dp(1,1))

OP,3 – 'Manager's expectation for waiting time was
less than 10 min'

OP,4 – 'Manager's expectation for food is to be around
25oC'

OP,5 – 'Manager's expectation for food is to score at
least 7 out of 10 for taste'

EP3,1 – ‘Consumer association encourages customers
to ask for reasonable compensation'

require

 'Letter (medium : white paper) with information is to
be written as complaint : (dp(1,10))

1. waiting time for food was 20 min,
2. food was lukewarm at 20oC,
3. score for taste of food was 5,
4. a free meal is serve as compensation,

OP,6 – 'Manager preferred communication to be
private' requires 'Letter (medium : white paper) with
information is to be put in an envelope' (dp(1,11))

Concluding points

1. We have outlined a design method embedded in LM
which produces requirements leading to possibility of
choice of product and IO. The method operates in
terms of properties to which a particular product and a
system can be fitted. The design procedure begins with
changing and quiescent properties the identification of
which is an empirical exercise.

2. A logical procedure originating from these
properties has been shown. Involvement of a client or a
user is essential as the agent with knowledge of a
particular scenario.

3. Dynamic and stative requirements have been
introduced. The use of the former is usual practice in
engineering.

4. 1st and 2nd dynamic requirements expressed in
generic terms to admit choice plus AP and EP
properties are directed at selecting a product and IO,
stative requirements refer to properties of product and
IO once selected.

5. Properties of products (artifacts, energy,
information) are expressed linguistically in a uniform
way. Thus, their effectiveness can be evaluated
uniformly (not included here).

6. The operation of the scheme in Fig.3. is governed by
an ‘objective’. This point has not been considered here.
The manager’s decision process whether to give
compensation or not is not shown.

7. Carriers of EP properties bring into the scheme
stakeholders and interested and affected parties.

8. The use of generic objects, AP and EP properties
enables the entry of choice and creativity into the
scheme.

RE-Publications

Book Reviews

Writing Better Requirements
Ian Alexander and Richard Stevens
Addison-Wesley, 2002.
ISBN 0-321-13163-0

This book provides practical and detailed guidelines on
how to write user requirements in a style that is
understandable by business people and developers. The
authors’ approach to writing requirements addresses
the “gulfs to be bridged” between: development and
marketing, users and developers and staff and
customers. They provide convincing examples of how
even the simplest project has a complex set of

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 23

stakeholders and how the requirements depend on
identifying and involving these stakeholders. And the
section on workshops is packed with hints on how to
run a requirements workshop and get tangible input
from all the stakeholders.

Scenarios are effectively used to identify, structure and
link goals and requirements. Each goal is connected to
a number of primary and exception scenarios and each
scenario is made up of a number of atomic
requirements.

The chapter on requirements writing gives advice on
how to write good atomic requirements and also
discusses common pitfalls like ambiguity, speculation
and rambling and how to avoid them. Frequent
exercises (along with sample answers) steer the reader
to detailed consideration of the everyday problems of a
requirements engineer.

I found the discussion of different names for
requirements, constraints and goals to be a trifle
confusing. But, to be fair, requirements engineering is
an emerging discipline and terminology has not yet
stabilised.

I recommend this book to anyone who would like a
clear non-academic guide to what requirements writing
is, or should be, all about and why it matters. The book
is suitable for business people and developers. The
authors have done what they set out to do; they have
bridged the gap.

Suzanne Robertson

Requirements by Collaboration
Workshops for Defining Needs

Ellen Gottesdiener
Addison-Wesley 2002
ISBN 0-201-78606-0

It really isn’t every day that someone writes a book
that provides a completely fresh take on requirements.
Ellen Gottesdiener has managed to do just that.

This readable and practical book is visibly based on a
wealth of direct experience of facilitating requirements
workshops, and her message is focused exclusively on
the power of the workshop approach. This does mean
that this book isn’t for every project – if you are
working on a subsystem under a strict contract, there is
little scope for collaborating with stakeholders to work
out the requirements together. To her credit,
Gottesdiener carefully points out the limits of her
approach, and she is admirably well-read.

Part 1 of the book steps through what a requirements
workshop is, and what it should deliver; how to make a
workshop succeed.

Part 2 looks at what goes on in a workshop, and offers
an admirable range of strategies for organizing
workshops, types of question to ask, how to facilitate,

the logistics of organizing a workshop, what to do if
things are difficult, and tools you can use to make
things ‘flow’. Proven groupwork patterns such as
forming-storming-norming-performing are explained
and illustrated; lower-level patterns such as ‘decide
how to decide’ are documented in an Appendix.

Part 3 looks at how to design workshops, with case
studies on what worked well and what didn’t. The final
chapter wisely discusses how to make the case for
requirements and workshops to management, and how
evaluate progress. The sections on the business value
of requirements and how to ‘surface’ problems are
excellent.

The book uses the language of Use Cases, and refers to
other UML diagrams along the way. It also mentions
software from time to time (and software is
unfortunately emphasized in the cover blurb), but this
is definitely a book that is useful in systems of all types
– from civil engineering projects to personal music
players.

There are parts of this book that benefit enormously
from Gottesdiener’s natural enthusiasm, and the simple
fact that she is American. She is able to talk in a simple
and effective way about making workshops fun; about
drawing mandalas and using the 4 principles of the
native American medicine wheel; even about using
toys as prizes and holding warm-up exercises to get
people into collaborative mood.

The helps – navigation diagrams, tables of techniques,
further readings, bibliography, glossary, index – are
excellent; Gottesdiener has applied her care for
participants to her readers. For instance the further
reading is never just a list; instead she says ‘..offers
wisdom on..’, ‘..is a landmark article that..’, ‘..is a
superb book that..’ giving the reader a 3 or 4 line pen-
portrait of each recommended reading.

Even engineers who have been running workshops for
years will find new insights, conceptual tools and
techniques in this lively and welcome contribution.
Every requirements engineer should have a copy in a
handy place on their bookshelf.

Ian Alexander

Introduction to Requirements Engineering

Ian Bray
Addison-Wesley 2002
ISBN 0-201-76792-9

2002 seems to be the year that Sam Gamgee returns
from the War of the Rings to scatter the magic earth
from the land of Lothlorien over the gardens of the
Shire where we live – at least as judged by the
profusion of new and varied books on requirements
that have sprouted this year.

This book “is intended for the novice, in particular the
undergraduate novice” and it should serve admirably

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 24

for that purpose. Actually Bray is too modest: this is
really quite a general introduction and it may make
many an experienced practitioner reflect on what they
do, and why. I’ll also enter the too-familiar plea for
systems not just software engineering; happily this
book’s message generalises perfectly well to
requirements for systems of many types, despite Bray’s
arguments to the contrary in the Introduction.

Ian Bray has written an engaging, lively, and
exceptionally clear book. His skill as a teacher plainly
contributes to his ability to write and to discover
requirements effectively. He has made an entirely fresh
attempt at organising our domain, with some success.
Better, he does not merely describe a list of techniques
you can apply: the book steps through a credible
process – in part 1, from elicitation to analysis to
specification to validation; in part 2, through
techniques for all of these – and shows how the
different approaches contribute to getting the right
system. Few other books do this; Sutcliffe’s new book
does, but in a far more detailed and researchy way.
These are very welcome signs that RE is beginning to
mature: something coherent can be said about each
stage and also about different types of problem.

Bray is fresh and funny on the errors of the past: why
did Structured Analysis fail? Why did people call SA
approaches methodologies when these weren’t even
methods? For instance:

"Ironically reflecting the ‘Victorian novel’ problem
that it was introduced to combat, a morass of
documentation was produced, much of it modelling the
detailed process of a pre-existing system. It is highly
questionable whether [such a] process .. is a matter for
detailed study anyway; the process of the problem
domain, certainly, and maybe the function of a pre-
existing system but that is not the same thing.

It might have been seen as a clue to the problem that
sometimes much of this documentation was not used.
After expending a great deal of effort .. on its
production it was simply side-lined."

This is at once witty and serious, light and reflective,
though we may wonder whether the novice will
appreciate its subtleties.

How can we do better? Bray’s recipe is a mixture of
techniques for elicitation and analysis and modelling,
including more than just a graceful bow to Michael
Jackson’s Problem Frames. Much of the Analysis
chapter explains in detail how to select and apply
Problem Frames – in fact forming a detailed and
readable introduction to the topic. He’s very good on
things you probably thought you knew, like Decision
Tables and how to optimise them –- the reader is
invited to try to make the simplified table smaller,
which is possible (I did it) but which (surprise,
surprise) makes it harder to understand. And like
Kovitz, who is also one of Bray’s heroes, he’s good on
making requirements readable:

"[Avoid] Duckspeak – meaningless padding and
tautologies, e.g. ‘The lift request validation function
will validate lift requests’."

Unfortunately the book also contains a few mistakes.
Tacit knowledge does not just mean stuff ‘considered
too obvious to mention’; it’s to do with what ‘we know
but cannot tell’, such as skill, as Polanyi says. Reviews
do not need to walk through documents – it is often
better to walk through the change requests instead.
Several diagrams risk confusing “the novice” with
wrong labels, e.g. Figure 4.40 swaps the reality and
machine boxes. It isn’t true that RE happens at the start
of software projects; it is strongly connected with
acceptance and verification, not to mention tracing
requirements during partitioning into separate
hardware and software subsystems. Design constraints
are far from rare as claimed – at least in railway,
telecommunications, and aerospace, to name just a few
domains; indeed, non-functional requirements often
make up well over half the specifications. It seems
peculiar to classify safety, security, reliability and
durability as ‘performance’ when people typically use
that term to cover speed and capacity requirements.

The lack of system focus is revealed by the absence of
a discussion of traceability, which to industrial ears is
the crucial thing that enables us to get our requirements
met. Indeed, atomic requirements are dismissed as
those

“that may be expressed in one sentence and which are
at the lowest level of abstraction short of detailing the
physical details of the interaction… Perhaps the terms
are best avoided.”

But no, we trace back to individual ‘atoms’ to ensure
we have met them and can verify (e.g. test) them. We
know we don’t have an atom when we can see there are
two things to be tested. It matters very much when we
want to ensure that our subcontractors have indeed
done every single thing we needed.

Happily, Bray more than makes up for this with well-
crafted and often witty explanation and discussion. The
organisation of the book, the glossary and other helps
are all excellent. The book’s value on undergraduate
courses is enhanced by exercises at the end of each
chapter in Part 1 (‘The Topics’), though there are none
in Part 2, and no answers seem to be available. For
instance, the reader is invited to complete a process
model diagram; to match ten descriptions to ten RE
terms; to classify 25 statements as problem domain,
commercial constraints, design constraints, functions,
or performance; to devise a problem frame for a small
problem.

There are also good examples, which are both used
throughout the text and then listed out to a reasonable
degree of non-repetitive completeness in Part 3. In the
space of fifty pages this describes four systems with
elicitation plan, elicitation notes, requirements, and
specifications (incidentally, this is a characteristically
clear and workable naming convention). These show
students (and practitioners, perhaps) how the products

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 25

of each activity help to make the requirements clear.
The range of examples is interesting – yacht racing
results; the dreaded lift controller; a drilling machine’s
data file translator; and a Petri net diagramming tool.
Happily, at least two of these are certainly system
problems.

Teachers of university courses will find this a serious
(if unusually readable) contender for the role of
introductory text. There aren’t many existing rivals;
Sutcliffe’s excellent book is intentionally far more
advanced; Kotonya and Sommerville has a strong slant
towards viewpoints and conflict resolution (scarcely
mentioned by Bray); Alexander & Stevens isn’t
intended as a university text and doesn’t cover
analysis, though it is introductory and has detailed
exercises (with answers); the Robertsons’ is actually
quite suitable but is designed for industry.

More experienced practitioners may also find it useful
as a light introduction to techniques that came into
service since their graduate days. It’s a very welcome
addition to the literature.

Ian Alexander

Tell Me A Story

Roger C. Schank
Northwestern University Press, 1990
ISBN 0-810-11313-9

In this pioneering, enjoyable and insightful book,
Schank leads the reader to start from scratch when
thinking about what we mean by knowledge, memory,
and intelligence.

His thesis is essentially that being human means telling
stories:

"...all we know is embodied in stories."

We remember stories, and perhaps they are the key to
how we organize our memories, which is to say our
minds. We know what to do in a situation because we
have a wired-in script that we have (maybe painfully)
learnt – and we behave with skill in that situation
because we can follow that story efficiently. We can
intelligently plan and reason about alternative plans,
because we can tell stories with happy or unhappy
endings for each variation.

I hope this is enough context to make it quite evident
that Schank is totally relevant to thinking about how to
capture and organize requirements. His work on Scripts
set the tone of much of the Artificial Intelligence
research in the 1980's: what was then called
"knowledge elicitation" has of course transmuted into
"requirements elicitation" today. Schank consistently
argued that people ran their lives by stories, such as the
famous restaurant script – you go in, hang up your
coat, get shown to a table, sit down, read the menu and
so on. This was taken terribly literally as a precise set
of rules at the time, which (of course) didn't work; but

Schank's work has also always emphasized the vague
and associative nature of human thought, such as the
way we connect one story with another, or events and
details with a story. This should have warned people
not to be too rule-bound and literal.

Schank writes fluently, cogently, and with a sense of
fun as well as of exploration -- he dares to break the
rules (and across the cover of the book is a strapline
that says "rethinking theory"). The rethinking has to
reach back far into the past, indeed to Aristotle, whose
view of reasoning was that it had to be theoretical and
hence rule-based, episteme – and for the last two
millennia, the theory of knowledge has been
Aristotelian "epistemology". A competing view even in
ancient times was that you could reason from instances
or cases, casuistry, which like rhetoric and sophistry
was not originally a pejorative term. Only since the
1980's has case-based reasoning come to be honoured
again, and rulebases have come to be seen as
hopelessly limited except in very tightly-delimited
domains. It's almost funny that it has taken 2000 years
to get back and fix mistakes made by the Ancient
Greeks, but that's the way it is. For me, this is
extremely important – it is a revolution in thought, and
it goes a long way to explaining why traditional
arguments always break down. Another (closely-
related) part of the repair and replacement of outworn
arguments is Polanyi's demolition of the idea that
knowledge is conscious – much of the way that skill
works is plainly tacit.

Given the contributions of Polanyi and Schank,
requirements engineers – indeed, system thinkers and
developers in general -- need to come to grips with the
fact that people, even if highly skilled and even
'expert', cannot give us precise rule-like requirements.
If we try, we will get bad and wrong requirements.
Instead, we urgently need to start thinking and working
in stories – scenarios, use cases, scripts, user stories,
whatever. We can use these as hooks to retrieve
connected ideas and build a shared understanding of
what people need, by talking about what they actually
do. Then we'll have requirements that are somewhat
closer to reality.

The book looks at where stories come from and why
we tell them; how we understand and index stories;
how stories shape memory; "story skeletons", i.e. the
structure of stories; the stories of different cultures;
and the role of stories in intelligence.

There is a very short list of references, but Schank
sprinkles the text freely with quotations and jokes,
examples and stories from all over – if you don't know
what Chutzpah is, you soon will from Tell Me A Story.

Everyone interested in writing better requirements
should at once read this book. Academics will find
many stimulating ideas for things that ought to be
researched; practitioners will be able to reflect in an
easy-to-read book on their daily work; students will get
an insight into one of the leading minds in the field of
human knowledge.

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 26

Ian Alexander

RE-Sources

For a full listing of books, mailing lists, web pages and
tools that have appeared in this section in previous
newsletters, see the RQ archive at the RESG website:
http://www.resg.org.uk

The requirement management place
http://www.rmplace.org

A good general resource for RE issues. Includes Alan
Davis’ Requirements Bibliography.

CREWS web site:
http://sunsite.informatik.rwth-aachen.de/CREWS/

An interesting collection of 72 papers (!) and a
description of an ESPRIT project on co-operative
requirements engineering with scenarios.

Requirements Engineering, Student Newsletter:
http://www.cc.gatech.edu/computing/SW_Eng/resnews.h
tml

IFIP Working Group 2.9 (Software Requirements
Engineering):
http://www.cis.gsu.edu/~wrobinso/ifip2_9/

Requirements Engineering Journal (REJ):
http://rej.co.umist.ac.uk/

RE resource centre at UTS (Australia):
http://research.it.uts.edu.au/re/

Volere:
http://www.volere.co.uk

Reduced rates are available to all RESG members
when subscribing to the REJ.

Mailing lists

RE-online (formerly SRE):
http://www-staff.it.uts.edu.au/~didar/RE-online.html

The RE-online mailing list aims to act as a forum for
exchange of ideas among the requirements engineering
researchers and practitioners. To subscribe to RE-online
mailing list, send e-mail to majordomo@it.uts.edu.au
with the following as the first and only line in the body
of the message:

subscribe RE-online <your email address>

LINKAlert:
http://link.springer.de/alert

A free mailing service for the table of contents of the
International Journal on Software Tools for
Technology Transfer.

RE-Creations
To contribute to RQ please send contributions to Pete
Sawyer (sawyer@comp.lancs.ac.uk). Submissions must
be in electronic form, preferably as plain ASCII text or
rtf.

Deadline for next issue: 1st December 2002.

RE-Actors

The committee of RESG

Patron: Prof. Michael Jackson, Independent Consultant.
E-Mail: jackson@acm.org.

Chair: Prof. Bashar Nuseibeh, Computing Department,
Faculty of Maths and Computing, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK. E-Mail:
B.A.Nuseibeh@open.ac.uk.

Vice-Chair: Dr Alessandra Russo, Department of
Computing, Imperial College, 180 Queen’s Gate,
London SW7 2BZ, UK. E-Mail: ar3@doc.ic.ac.uk

Treasurer: Dr. Neil Maiden, Centre for HCI Design,
City University, Northampton Square, London EC1V
OHB, UK. E-Mail: N.A.M.Maiden@city.ac.uk.

Secretary: Dr. Wolfgang Emmerich, University College
London, Department of Computer Science, Gower
Street, London WC1E 6BT, UK. E-Mail:
W.Emmerich@cs.ucl.ac.uk.

Membership secretary: Steve Armstrong, Computing
Department, Faculty of Maths and Computing, The Open
University, Walton Hall, Milton Keynes, MK7 6AA,
UK. E-Mail: S.Armstrong@open.ac.uk.

Newsletter editor: Dr Peter Sawyer, Lancaster
University, Computing Department, Lancaster, LA1
4YR, UK. E-Mail: sawyer@comp.lancs.ac.uk.

Newsletter reporter: Ian Alexander, 17A Rothschild
Road, Chiswick, London W4 5HS. E-Mail:
iany@easynet.co.uk.

Publicity officer: Juan Ramil, Computing Department,
Faculty of Maths and Computing, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK. E-Mail:
J.F.Ramil@open.ac.uk.

Co-Publicity officer: Sebastian Uchitel, Department
of Computing, Imperial College, 180 Queen’s Gate,
London SW7 2BZ, UK. E-Mail: su2@doc.ic.ac.uk

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 27

Regional officer & Chair for the North of England:
Dr Kathy Maitland, University of Central England,
Perry Bar Campus, Birmingham, B42 2SU. E-Mail:
Kathleen.Maitland@uce.ac.uk.

Industrial liaison:

David Bush, National Air Traffic Services, UK. E-
Mail: David.Bush@nats.co.uk.

Dr Sofia Guerra, Adelard, Drysdale Building, 10
Northampton Square, London, EC1V 0HB, UK. E-
Mail: aslg@adelard.com.

Dr Efi Raili, Praxis Critical Systems, 20 Manvers
Street, Bath BA1 1PX. E-Mail: efi@praxis-cs.co.uk.

Suzanne Robertson, Atlantic Systems Guild Ltd. 11 St.
Mary’s Terrace, London W2 1SU, E-Mail:
suzanne@systemsguild.com

RE-Funds

Minutes of the 8th Annual General Meeting

Held at University College London
Wednesday 10th July 2002.

Chair: Bashar Nuseibeh (Open University)
Minutes: Wolfgang Emmerich (UCL)
Present: approx 100 members

Agenda:

1. Minutes of Previous Meeting
2. Chair’s Report
3. Publicity Report
4. Treasurer’s Report
5. Election of Executive Committee Members
6. Any Other Business

1. Minutes of Previous Meeting

The minutes of the 7th AGM in 2001, which had been
published in RQ, were agreed as a correct record of the
proceedings.

2. Chair’s Report

Bashar Nuseibeh started his report by highlighting a
number of events that were organized in the past year.
The events were:

• Requirements for Mobile Systems, 21 November
2001, UCL, London

• Key Challenges in Safety Requirements
Engineering, 27 February 2002,

• Praxis Critical Systems, Bath
• Recycling Requirements for Systems and Product

Families, 24 April
• 2002, Imperial College, London
• Scenarios Work! 10th July 2002, UCL, London

Moreover, RESG had co-sponsored a number of events
and that RESG members could therefore attend at a
reduced admission fee. These included:

• Managing Evolving Requirements, 11 December
2001, The Royal Society, London

• Mastering the Requirements Process, February
18-20, 2002, London

• Requirements Modelling, Feb. 21-22, 2002,
London

• RE’02 (www.re02.org) - 9-13 September 2002,
Essen, Germany

Bashar Nuseibeh then thanked Pete Sawyer (Editor)
and Ian Alexander (Reporter) for editing three issues of
Requirements Engineering Quarterly (RQ24-RQ26).
There had been only three issues because only 10
months had passed since the last AGM. RQ production
and distribution has in the last year been moved
entirely to Lancaster (from U Hertfortshire). Bashar
encouraged members to write articles and send them to
Pete Sawyer in Lancaster. He highlighted that there
would be no formal reviewing process but that Pete
Sawyer might work with authors if refinement of
articles was required.

Bashar concluded his report by highlighting an
industrial liasion team that has been established during
the last year. The aim of the team is to ensure that
RESG continues to address the needs of practising
requirements engineers. The membership of that team
included Efi Raili, (Praxis), David Bush (NATS),
Suzanne Roberston (Atlantic Systems Guild) and
Michael Jackson (Independent) and is open to welcome
new members.

3. Publicity Report

Juan Ramil (Open University) reported on recent
efforts to improve communication with the RESG
membership. He reported that the RESG Web Site
(http://www.resg.org.uk) had been transferred and was
now hosted by the Open University.

Juan highlighted that the RESG mailing list that is
being used to inform members and other practitioners
about requirements engineering events currently has
about 700 members, from both in the UK and overseas.

Juan welcomed suggestions from the RESG
membership for improving the communication further
and invited comments to be sent to info@resg.org.uk

4. Treasurer’s Report

Neil Maiden (City University) in his role as Treasurer
of the RESG reported about the current financial
situation, which can be seen from the Profit and Loss
statement below:

Requirenautics Quarterly Issue 27 (November 2002)

The Newsletter of the BCS Requirements Engineering SG Page 28

Balance in May 2001: 19,513.30

Receipts

 Group subscriptions 1860.00

 Gold account interest received 917.07

 Gross receipts from events 1832.28

 Gross other receipts 270.65

RECEIPTS TOTAL 4880.00

Payments

 Printing and stationery 444.84

 Postage and telephone 221.79

 Gross event payments 1047.14

 Gross other payments 33.10

PAYMENTS TOTAL 1,746.87

Balance in April 2002 22,646.43

Neil commented that the financial situation of the
RESG was healthy and highlighted that it was possible
to organize to continue to run events that were not
necessarily making a profit.

5. Election of Executive Committee Members

The chair proposed the following individuals, who
agreed to stand for the RESG executive committee:

Patron: Michael Jackson (Independent)

Chair: Bashar Nuseibeh (The Open University)

Vice Chair: Alessandra Russo (Imperial College)

Secretary: Wolfgang Emmerich (UCL)

Treasurer: Neil Maiden (City University)

Membership Secretary: Stephen Armstrong (The Open
University)

Publicity Officer:Juan Ramil (The Open University)

Co-Publicity Officer: Sebastian Uchitel (Imperial
College)

Newsletter Editor: Peter Sawyer (Lancaster University)

Reporter: Ian Alexander (Independent)

Regional Officer:Kathy Maitland (UCE at
Birmingham)

Industrial Liaison Team: David Bush (NATS), Sofia
Guerra (Adelard), Elena Perez-Minana (Philips), Efi
Raili (Praxis), Suzanne Robertson (Atlantic Systems
Guild)

The election was proposed and seconded. The motion
was passed unanimously.

6. Any other Business

There being no other business, Bashar Nuseibeh closed
the meeting.

